On the Editing Distance Between Trees and Related Problems by
Kaizhong Zhang
Dennis Shasha
Ultracomputer Note 122
NYU Computer Science Technical Report 310
August, 1987

Ultracomputer Research Laboratory

On the Editing Distance Between Trees and Related Problems

by
Kaizhong Zhang
Dennis Shasha
Ultracomputer Note 122
NYU Computer Science Technical Report 310
August, 1987

This work was supported in part by the National Science Foundation under grant number DCR8501611, by the Office of Naval Research under grant number N00014•85•K-0046, and by the Supercomputing Research Center.

Since a tree can represent a scene description, a grammar parse, a structural description, and many other phenomena, comparing trees is a way to compare scenes, parses and so on. We consider the distance between two trees to be the (weighted) number of edit operations (insert, delete, and modify) to transform one tree to another. Then, we consider the following kinds of questions:

1. What is the distance between two trees?
2. What is the minimum distance between T_{1} and T_{2} with an arbitrary subtree removed? What if zero or more subtrees can be removed from T_{2} ? A specialization of these algorithms solves the problem of approximate tree matching.
3. Given k, are T_{1} and T_{2} within distance k of one another and if so what is the ir distance?

We present a postorder dynamic programming algorithm to solve question 1 in sequential time $O\left(\left|T_{1}\right| \times\left|T_{2}\right| \times \operatorname{depth}\left(T_{1}\right) \times \operatorname{depth}\left(T_{2}\right)\right)$ compared with $O($ $\left|T_{1}\right| \times\left|T_{2}\right| \times\left(\left.\operatorname{depth}\left(T_{2}\right)\right|^{2} \times\left(\operatorname{depth}\left(T_{2}\right)\right)^{2}\right)$ for the best previous algorithm due to Tai. Further, our algorithm can be parallelized to give time $O($ $\left.\left|T_{1}\right|+\left|T_{2}\right|\right)$. Our approach extends to answer question 2 giving an algorithm of the same complexity. For queston 3, a variant of our distance algorithm yields an $O\left(k^{2} \times \min \left(\left|T_{1}\right|,\left|T_{2}\right|\right) \times \min \left(\operatorname{depth}\left(T_{1}\right)\right.\right.$, depth $\left.\left.\left(T_{2}\right)\right)\right)$ algorithm.

1. Editing distance between two trees

Ordered labeled trees are trees in which the left-to-right order among siblings is significant. The distance between such trees is a generalization of the distance berween strings.

The following definitions are basically from [T-79, WF.74]. Let T_{1} and T_{2} be two trees with N_{1} and N_{2} nodes respectively. Suppose that we have an ordering for each tree and $\mathrm{T}_{1}[\mathrm{i}]$ means the ith node of tree T_{1} in the given ordering. $T[i . . j]$ is the subtree of T whose nodes are numbered ito j inclusive. If $i>j$, then $T[i . . j]=\varnothing$. An edit operation is a pair $(a, b) \neq(\Lambda, \Lambda)$ of strings of length less than or equal to 1 and is usually written as $a-b$. We call $a-b$ a change operation if $a \neq \Lambda$ and $\mathrm{b} \neq \Lambda$; a delete operation if $\mathrm{b}=\Lambda$; and an insert operation if $\mathrm{a}=\Lambda$.

Let us consider these three kinds of operations.

1. Change: To change one node label to another.

2. Delete: To delete a node.
(All children of the deleted node become children of the parent a.)

\qquad

3. Insert: To insert a node.
(A consecutive sequence of siblings among the children of a become the children of b.)

Let S be a sequence s_{1}, \ldots, s_{k} of edit operations. An S-derivation from A to B is a sequence of trees $A_{0}, \ldots A_{k}$ such that $A=A_{0}, B=A_{k}$, and $A_{i-1} \rightarrow A_{i}$ via s_{1} for $1 \leq i \leq k$.

Let γ be an cost function which assigns to each edit operation $a-b$ a nonnegative real number $y(a \rightarrow b)$. This cost can be different for different nodes, so it can be used to give greater weights to, for example, the higher nodes in a tree than to lower nodes.

We constrain γ to be a distance metric. That is,
i) $\gamma(a-a)=0$;
ii) $\gamma(a-b)=\gamma(b-a)$; and
iii) $(a-c) \leq \gamma(a-b)-\gamma(b-c)$.

We extend γ to the sequence S by letting $\gamma(S)=\sum_{i=1}^{i=k} \gamma\left(s_{i}\right)$. Formally the distance between T_{1} and T_{2} is defined as:
$\delta\left(T_{1}, T_{2}\right)=\min \left\{\gamma(S) \mid S\right.$ is an edit operation sequence taking T_{1} to $\left.T_{2}\right\}$. The definition of γ makes this a distance metric also.

The edit operations give rise to a mapping. Intuitively, a mapping is a description of how a sequence of edit operations transform T_{1} into T_{2}, ignoring the order in which edit operations are applied.

Consider the following diagram of a mapping:

$$
T_{1} \quad T_{2}
$$

A dotted line from $T_{1}[i]$ to $T_{2}[j]$ indicates that $T_{1}[i]$ should be changed to $T_{2}[j]$ if $T_{1}[i] \neq$ $T_{2}[j]$, or that $T_{1}[i]$ remains unchanged if $T_{1}[i]=T_{2}[j]$. The nodes of T_{1} not touched by a dotted line are to be deleted and the nodes of T_{2} not touched are to be inserted. The mapping shows a way to iransform T_{1} to T_{2}.

Formally we define a triple ($\mathrm{M}, \mathrm{T}_{1}, \mathrm{~T}_{2}$) to be a mapping from T_{1} to T_{2}, where M is any set of pair of integers (i, j) satisfying: ${ }^{1}$

(2) For any parr of (i_{2}, j_{1}) and (i_{2}, j_{2}) in M,
(a) $i_{1}=12$ iff $j_{1}=j 2$
(b) $T_{1}\left[i_{1}\right]$ is to the left of $T_{:}\left[i_{2}\right]$ iff $T_{2}\left[i_{1}\right]$ is to the left of $T_{2}\left[i_{2}\right]$
(c) $T_{1}\left[i_{1}\right]$ is an ancestor of $T_{1}\left[i_{2}\right]$ iff $T_{2}\left[i_{1}\right]$ is an ancestor of $T_{2}\left[i_{2}\right]$

We will use Mi instead of ($\mathrm{M}_{1} \mathrm{~T}_{1}, \mathrm{~T}_{2}$) if there is no confusion. Let M be a mapping from T_{1} to T_{2}. Let I and J be the sets of nodes in T_{1} and T_{2}, respectively, not touched by any line in M. Then we can define the cost of M :

$$
\gamma(\mathrm{M})=\sum_{(\mathrm{i}, \mathrm{j}) \in M} \gamma\left(\mathrm{~T}\left[[\mathrm{i}] \rightarrow \mathrm{T}_{2}[\mathrm{j}]\right)-\sum_{1 \in 1} \gamma\left(\mathrm{~T} 1[\mathrm{i}-\mathrm{A})-\sum_{j \in J} \gamma\left(\mathrm{~A} \rightarrow \mathrm{~T}_{1}[\mathrm{j}]\right)\right.\right.
$$

Mappings can be composed. Let M_{1} be a mapping from T_{1} to T_{2} and let M_{2} be a mapping from T_{2} to T_{3}. Define

$$
M_{1} \circ M_{2}=\left\{(\mathrm{i}, \mathrm{j}) \mid \exists \mathrm{k} \text { s.t. }(\mathrm{i}, \mathrm{k}) \in M_{\mathrm{i}} \text { and }(\mathrm{k} . \mathrm{j}) \in \mathrm{M}_{2}\right\}
$$

Lemma 1:
(1) $\mathrm{M}_{1} \mathrm{O} \mathrm{M}_{2}$ is a mapping
(2) $\gamma\left(\mathrm{M}_{1} O \mathrm{M}_{2}\right) \leq \gamma\left(\mathrm{M}_{1}\right)-\gamma\left(\mathrm{M}_{2}\right)$

Proof:

(1). is clear from the definition of mapping
(2). Let M_{1} be the mapping from T_{1} to T_{2} and I_{1} and J_{1} be the corresponding deletion and insertion sets. Let M_{2} be the mapping from T_{2} to T_{3} and I_{2} and J_{2} be the corresponding deletion and insertion sets. Let $\mathrm{M}_{1} \mathrm{O} \mathrm{M}_{2}$ be the composed mapping from T_{1} to T_{3} and let I and J be the corresponding deletion and insertion sets.

Three general situations occur. (i.j) $\in M_{1} \circ M_{2}, i \in I$, or $j \in J$. In each case this corresponds to an editing operation $\gamma(x-y)$ where x and y may be nodes or may be Λ. In all such cases, the

[^0]triangle inequality on the distance metric γ ensures that $\gamma(x-y) \leq \gamma(x \rightarrow z)-\gamma(z \rightarrow y)$.
The relation between a mapping and a sequence of edit operation is as follows:

Lemma 2:

Given S, a sequence s_{1}, \ldots, s_{k} of edit operations from T_{1} to T_{2}, there exists a mapping M from T_{1} to T_{2} such that $\gamma(M) \leq \gamma(S)$.

Proof:
This can be proved by induction on k. The base case is $k=1$. This case is correct, because any editing operation preserves the ancestor and sibling relationships in the mapping. In general case, let S_{1} be the sequence $s_{1}, \ldots, s_{k}-1$ of edit operation. There exist a mapping M_{1} such that $\gamma\left(M_{1}\right) \leq$ $\gamma\left(S_{1}\right)$. Let M_{2} be the mapping for ς_{k}. Now from lemma 1 , we have following. $\gamma\left(M_{1} \circ M_{2}\right) \leq \gamma\left(M_{1}\right)-\gamma\left(M_{2}\right) \leq \gamma(S)$.

Hence, $\delta\left(T_{1}, T_{2}\right)=\min \left\{y(M) \mid M\right.$ is a mapping from T_{1} and $\left.T_{2}\right\}$
There has been previous work on this problem. Tai [T-79] gave the previous best algorithm for the problem. [$\mathrm{Z}-83$] is an improvement of [T-79], giving the same sequential time as our algorithm. Our new algorithm is smpler than [$Z-83$], gives a better parallel time, and extends to related problems. The algorithm of Lu [L-79] does not extend to trees of more than a two levels.

2. A simple new algorithm

This algorithm. unlike [T-79], [L-79]. and [Z-83], will, in its intermediate steps, consider the distance between two ordered forests. A: first sight one may thank that this will complicate the work for us, but it will in fact make matters easier.

We use a postorder numbering of the nodes in the trees. In the postordering. $I_{1}[1 \ldots$ i] and $\mathrm{I}_{2}[1 \ldots \mathrm{j}]$ will generally be forests as in the following figure. (The edges are those in the subgraph of the tree induced by the vertices.) Fortunately, the definition of mapping for these induced ordered forests is the same as for trees.

T

$\mathrm{T}[4] \quad \mathrm{T}[5]$

$$
\mathrm{T}[1 . .7]
$$

Notation. Assume that tree I is numbered by post order. $l(i)$ is the number of the leftmost leaf descendant of the subtree rooted at $T[i]$. When $T[i]$ is a leaf, $l(i)=i . p(i)$ is the number of the parent of node $T[t]$. We define $p^{0}(i)=1 . p^{1}(i)=p(i), p^{2}(i)=p\left(p^{1}(i)\right)$ and so on. Let L_{i} be the depth of node i. (We take the depth of the root to be 1.) Let anc $(i)=\left\{p^{h}\right.$ (i) $\left.0 \leq k \leq L_{1}\right\}$.

2.1. A first attempt

We first attempt to solve the problem as it is solved for strings. We try to compute $D\left(T_{1}[1\right.$.. $i], T_{2}[1 \ldots j]$), where $1 \leq i \leq N_{1}$ and $1 \leq j \leq N_{2}$. There are three cases:

Case $1 . \mathrm{T}_{1}[\mathrm{i}]$ is not touched by a line in M .
In this case $D\left(T_{1}[1 \ldots i], T_{2}[1 \ldots j]\right)=D\left(T_{1}[1 \ldots i-1], T_{2}[1 \ldots j]\right)-\gamma\left(T_{1}[i]-1\right)$.
Case 2. $\mathrm{I}_{2}[\mathrm{j}]$ is not touched by a line in M .
In this case $D\left(T_{1}[1 \ldots i], T_{2}[1 \ldots j]\right)=D\left(T_{1}[1 \ldots i], T_{2}[1 \ldots j-1]\right)-\gamma\left(\Lambda-T_{2}[j]\right)$.
Case 3. $\mathrm{T}_{1}[\mathrm{i}]$ and $\mathrm{T}_{2}[\mathrm{j}]$ are touched by lines in M .
As we explain later, (i, j) must be in M and any node in the subtree rooted at $T_{1}[i]$ can only be touched by a node in the subtree rooted at $\mathrm{T}_{2}[\mathrm{j}]$.

Hence $D\left(T_{1}[1 \ldots i], T_{2}[1 \ldots j]\right)=$
$D\left(T_{1}[1 \ldots l(i)-1], T_{2}[1 \ldots 1(j)-1]\right)-D\left(T_{1}[1(i) \ldots i-1], T_{2}[1(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)$ Recall that if $\mathrm{i}>\mathrm{j}$, then $\mathrm{T}[\mathrm{i} . . \mathrm{j}]=\varnothing$.

The following figure show's the situation.
(The solid lines indicate the pairs of structures whose distances must be calculated.)

Case 3 expresses the crucial difference between strings and trees. It says that in order to compute the distance between the forests up to $T_{1}[i]$ and $T_{2}[j]$, we need the distance between the subtrees rooted at those nodes. (Failing to recognize this caused Lu’s algorithm to come to grief.) Calculating it requires knowing $D\left(T_{1}[1(i)\right.$.. i - 1$], T_{2}[1(j)$.. $)$ - 1$]$), which our first attempt did not compute.

In general, we compute $\mathrm{D}\left(\mathrm{T}_{1}\left[\mathrm{i}_{1} \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[\mathrm{H}_{1} \ldots \mathrm{j}\right]\right)$. where
$i_{1} \in\left\{1\left(p^{0}(i)\right), l\left(p^{1}(i)\right), l\left(p^{2}(i)\right), \ldots, 1\right\}$ and
$j_{1} \in\left\{l\left(p^{0}(j)\right), l\left(p^{-}(j)\right), l\left(p^{-}(j)\right), \ldots, l\right\}$.
Note here for tree T with N nodes, node 1 is $l(\mathrm{~N})$-- the leftmost descendant of the root and the first node visited in the postorder traversal .- which equals $1\left(\mathrm{P}^{L^{-1}}\right.$ (i)), where L_{1} is the depth of node $T[i]$.

2.2. New Algorithm

We first present three lemmas and then give our new algorithm.
Recall that anc $(\mathrm{i})=\left\{\mathrm{p}^{k}(\mathrm{i}) \mid 0 \leq \mathrm{k} \leq \mathrm{L}_{\mathrm{i}}\right\}$
Lemma 3:
(1) If $i_{1} \in \operatorname{anc}(i)$, either $T_{1}\left[1\left(i_{1}\right) \ldots i-1\right]$ is empty or $i_{1} \in \operatorname{anc}(i-1)$.
(2) If $i_{1} \in \operatorname{anc}(i)$, either $T_{1}\left[1\left(i_{1}\right) \ldots l(i)-1\right]$ is empty or $i_{1} \in \operatorname{anc}(1(i)-1)$.
(3) If $i_{1} \in \operatorname{anc}(i)$, either $T_{1}[l(i) \ldots i-1]$ is empty or $i \in \operatorname{anc}(i-1)$.

Proof:
(1). Suppose $i_{1} \in \operatorname{anc}(i)$. Because of the post-order numbering, $p(i-1) \in \operatorname{anc}(i)$. If $i_{1} \geq p(i$ - 1), then either $i_{1} \in \operatorname{anc}(i-1)$ or i_{1} is in a subtree to the right of $p(i-1)$. But the second is impossible since i_{1} and $p(i-1)$ are both ancestors of i. If $i_{1}<p(i-1)$, then $T_{1}\left[1\left(i_{1}\right) \ldots i-1\right]$ is empty.
(2). Suppose $i_{1} \in \operatorname{anc}(i)$. If $l\left(i_{1}\right)=1(i)$, then $T_{1}\left[1\left(i_{1}\right) \ldots l(i)-1\right]$ is empty, If $l\left(i_{1}\right)<l(i)$, then $i_{1} \in \operatorname{anc}(p(1(i)-1))$. So, $i_{1} \in \operatorname{anc}(1(i)-1)$. By the post-ordering and the ancestor assumption, $1\left(i_{1}\right)>1(i)$ is impossible.
(3). Suppose $i_{1} \in \operatorname{anc}(i)$. If $l(i)=i, T_{1}[1(i) \ldots i-1]$ is empty. If $l(i)<i$, then $p(i-1)=i$. So, $\mathrm{i} \in \operatorname{anc}(\mathrm{i}-1)$. By the post-ordering, $\mathrm{l}(\mathrm{i})>\mathrm{i}$ is impossible.

Lemma 4 deals with empty trees or forests.

Lemma 4:

(i) $\mathrm{D}(\varnothing, \varnothing)=0$
(ii) $D\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], \varnothing\right)=D\left(T_{2}\left[1\left(i_{1}\right) \ldots i-1\right] . \varnothing\right)-\gamma\left(T_{1}[i]-.1\right)$
(iii) $D\left(\varnothing, T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)=D\left(Z, T_{2}\left[1\left(j_{i}\right) \ldots j-1\right]\right)-\gamma\left(.1-T_{2}[j]\right)$
where $i_{1} \in \operatorname{anc}(i)$ and $j_{1} \in \operatorname{anc}(j)$

Proof:

(i) requires no edit operation. In (ii) and (iii), the distances correspond to the cost of deleting or inserting the bodes in $T_{1}\left[1\left(i_{1}\right)\right.$.. $\left.i\right]$ and $T_{2}\left[l\left(j_{1}\right)\right.$.. j $\left.j\right]$) respectively. \square

Lemma 5 deal with the general situation.

Lemma 5:

$D\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[l\left(j_{1}\right) . . j\right]\right)=\min \{$
$D\left(T_{1}\left[l\left(i_{1}\right) \ldots i-1\right], T_{2}\left[l\left(j_{1}\right) \ldots j\right]\right)-\gamma\left(T_{1}[i]-.1\right)$.
$D\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) \ldots j-1\right]\right)-\gamma\left(1-T_{2}[j]\right)$,
$\left.D\left(T_{1}\left[1\left(i_{1}\right) \ldots l(i)-1\right], T_{2}\left[l\left(j_{1}\right) \ldots l(j)-1\right]\right)-D\left(T_{1}[1(i) \ldots i-1], T_{2}[1(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)\right\}$ where $i_{1} \in \operatorname{anc}(i)$ and $i_{1} \in \operatorname{anc}(j)$

Proof:
Consider a minimum cost mapping M such that $\gamma(M)=D\left(T_{1}\left[l\left(i_{1}\right)\right.\right.$.. $\left.\left.i\right], T_{2}\left[l\left(j_{1}\right) . . j\right]\right)$. There are three cases.

Case 1:
$\mathrm{T}_{1}[\mathrm{i}]$ is not touched by a line in M . In this case
$D\left(T_{1}\left[l\left(i_{1}\right) \ldots i\right] . T_{2}\left[l\left(j_{1}\right) \ldots j\right]\right)=$
$D\left(T_{1}\left[1\left(i_{1}\right) \ldots i-1\right], T_{2}\left[1\left(j_{2}\right) \ldots j\right]\right)-\gamma\left(T_{1}[i]-1\right)$
Case 2:
$T_{2}[j]$ is not touched by a line in M . In this case
$D\left(T_{1}\left[l\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{i}\right) \ldots j\right]\right)=$ $D\left(T_{1}\left[1\left(i_{1}\right) . . i\right], T_{2}\left[1\left(j_{1}\right) . . j-1\right]\right)-\gamma\left(1-T_{2}[j]\right)$

Case 3:
$\mathrm{T}_{1}[\mathrm{i}]$ and $\mathrm{T}_{2}[\mathrm{j}]$ are both touched by lines in M . Since a mapping must preserve ancestor and sibling relarionships, they must touch each other, i.e. (i, j) $\in \mathrm{M}$. For the same reason, any node in the subtree rooted at $T_{1}[i]$ can only be touched by a node in the subtree rooted at $T_{2}[j]$ and vice versa. Hence we have
$D\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)=$
$D\left(T_{1}\left[l\left(i_{1}\right) \ldots l(i)-1\right], T_{2}\left[l\left(j_{1}\right) \ldots l(j)-1\right]\right)-D\left(T_{1}[l(i) \ldots i-1], T_{2}[1(j) \ldots j-1]\right)+\gamma\left(T_{1}[i]-T_{2}[j]\right)$
$\mathrm{D}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)$ is just the minimum of the above three values.
We are now ready to to give our new algorithm.

Algorithm Basic Distance

```
begin
    \(D(\varnothing, \varnothing)=0\)
    for \(\mathrm{i}:=1\) to \(\mathrm{N}_{1}\)
        for \(i_{1} \in \operatorname{anc}(i)\)
            \(D\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], \varnothing\right)=D\left(T_{1}\left[1\left(i_{1}\right) \ldots i-1\right], \varnothing\right)-\gamma\left(T_{1}[i]-1\right)\)
    for \(\mathrm{j}:=1\) to \(\mathrm{Nl}_{2}\)
        for \(\mathrm{j}_{1} \in \operatorname{anc}(\mathrm{j})\)
            \(D\left(\oslash, T_{2}\left[1\left(j_{1}\right) . . j\right]\right)=D\left(\varnothing . T_{2}\left[1\left(j_{1}\right) . . j-1\right]\right)-\gamma\left(1-T_{2}[j]\right)\)
    for \(\mathrm{i}:=1\) to \(\mathrm{N}_{1}\)
        for \(\mathrm{j}:=1\) to \(\mathrm{N}_{2}\)
        for \(i_{1} \in \operatorname{anc}(i)\)
            for \(j_{1} \in\) anc( \(j\) ) begin
                \(D\left(T_{1}\left[1\left(i_{1}\right) . . i\right], T_{2}\left[1\left(j_{1}\right) . . j\right]\right)=\min \{\)
    \(D\left(T_{1}\left[1\left(i_{1}\right) \ldots i-1\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)-\gamma\left(T_{1}[i]-1\right)\),
    \(D\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) \ldots j-1\right]\right)-\gamma\left(1-T_{2}[j]\right)\).
    \(\left.D\left(T_{2}\left[1\left(i_{1}\right) \ldots l(i)-1\right], T_{2}\left[1\left(j_{1}\right) \ldots 1(j)-1\right]\right)-D\left(T_{1}[1(i) \ldots i-1], T_{2}[1(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)\right\}\)
        end:
end
```

Theorem 1: Algorithm Basic Distance correctly computes tree distance.

Proof:

From lemma 3 we know that all the distance terms used in the right hand side of the equations have been computed previously. From lemma 4 and lemma 5 , we know that the formulas used in above algorithm is correct.

3.1. Complexity

Let us consider the time and space complexity of our algorithm.
By definition of L_{i}, $|\operatorname{anc}(\mathrm{i})|=\mathrm{L}_{\mathrm{i}}$. Therefore the time and space complexity is at most $O\left(\sum_{i=1} L_{1} \cdot \sum_{j=1}^{-} L_{j}\right)$. If we substitute for $L_{1} \times L_{j}$ its maximum $L_{1} \times L_{2}$, we obtain the following.

The time and space complexity is $\mathrm{O}\left(\mathrm{I}_{1} \times \mathrm{N}_{2} \times \mathrm{L}_{1} \times \mathrm{L}_{2}\right)$. This is an improvement over the $O\left(N_{1} \times N_{2} \times L_{1}{ }^{2} \times L_{2}^{2}\right)$ complexity of $[T-79]$.

3.2. From trees to strings

The analysis in previous section is pessimistic. For special trees such as strings, the depth terms disappear altogether, as can be seen by observing the following. If we define lanc $(\mathrm{i})=\left\{1\left(i_{1}\right) \mid i_{1} \in\right.$ anc(i)\}, then we can rewrite the algorithm as follows:

```
for \(\mathrm{i}:=1\) to N :
    for \(\mathrm{j}:=1\) to \(\mathrm{N}_{2}\)
            for i: \(\in \operatorname{lanc}(i)\)
                for \(\mathrm{j}_{1} \in \operatorname{lanc}(\mathrm{j})\) begın
\(D\left(T_{1}\left[i_{1} \ldots i\right], T_{2}\left[j_{1} \ldots j\right]\right)=\min \{\)
    \(D\left(T_{1}\left[i_{1} \ldots i-1\right], T_{2}\left[i_{1} \ldots j\right]\right)-\gamma\left(T_{[ }[i]-1\right)\).
    \(D\left(T_{1}\left[i_{1} \ldots i\right], T_{2}\left[j_{1} \ldots j-1\right]\right)-\gamma\left(1-T_{2}[j]\right)\),
    \(\left.D\left(T_{1}\left[i_{1} \ldots 1(\mathrm{i})-1\right], \mathrm{T}_{2}\left[\mathrm{i}_{2} \ldots \mathrm{l}(\mathrm{j})-1\right]\right)-\mathrm{D}\left(\mathrm{T}_{1}[1(\mathrm{i}) \ldots \mathrm{i}-1], \mathrm{T}_{2}[1(\mathrm{j}) \ldots \mathrm{j}-1]\right)-\gamma\left(\mathrm{T}_{1}[\mathrm{i}]-\mathrm{T}_{2}[\mathrm{j}]\right)\right\}\)
            ead:
```

So, the complexity should be
$O\left(\sum_{i=1}^{i=N}|\operatorname{lanc}(i)| \times \sum_{j=1}^{j=N}|\operatorname{lanc}(j)|\right)$.
So, if the parent of node i has only i as a child, then $\operatorname{lanc}(i)=\operatorname{lanc}(p(i))$. It is not the actual depth of i that matters, therefore, but its "collapsed depth", i.e. the number distinct leftmost descendants of nodes on the path from i to the root.

In the important extreme case of a string, every node has one child, so every node has collapsed depth of 1 . Since $\|$ lanc $(\mathrm{i}) \mid=1$, time and space complexity of $\mathrm{O}\left(\mathrm{N}_{1} \times \mathrm{N}_{2}\right)$.

This is a nice property. This means that our algorithm is not only a generalization of the string algorithm to trees but also that when the input is really a string the complexity is the same as that of the best available algorithm for the general problem of string distance. The algorithms in [T-79] and [Z-83] do not have this property.

3.3. Parallel Implementation

A transformation of our algorithm to a parallel one has time complexity $O\left(N_{1}-N_{2}\right)$ while [T79] and [Z-83] bave time complexity $O\left(\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right) \times\left(\mathrm{L}_{1}-\mathrm{L}_{2}\right)\right)$. Our algorithm uses $\mathrm{O}\left(\mathrm{min}\left(\mathrm{N}_{1}, \mathrm{~N}_{2}\right)\right.$ $\left.\times \mathrm{L}_{1} \times \mathrm{L}_{2}\right)$ processors. Our strategy is to compute, in parallel, all distances $\mathrm{D}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right]\right.$,
$\left.T_{2}\left[1\left(j_{1}\right) . . j\right]\right)$ for which $i-j=k$.
We now present the parallel algorithm. (When the PARBEGIN - PAREND construct surrounds one or more for loops, it means that every setting of the iterators in the enclosed for loops can be executed in parallel. The semantics are those of the sequential program ignoring this construct.)

Algorithm Parallel Distance
begin
$D(\varnothing, \varnothing)=0$

```
for i:= 1 to Ni
    PARBEGIN
        for i, \epsilon anc(i)
```


PAREND
for $\mathrm{j}:=1$ to N_{2}
PARBEGIX
for $j_{1} \in \operatorname{anc}(j)$
$D\left(\subset, T_{2}\left[1\left(j_{i}\right) . . j\right]\right)=D\left(Z . T_{2}\left[l\left(j_{1}\right) . . j-1\right]\right)-\gamma\left(.1-T_{2}[j]\right)$
PAREND

```
for \(k:=2\) to \(N_{1}-N_{2}\)
    PARBEGIN
        for \(\mathrm{i}:=\max \left(1, \mathrm{k}-\mathrm{N}_{1}\right)\) to \(\min \left(\mathrm{k}-1, \mathrm{~N}_{2}\right)\) do begin
            \(j:=k-1\),
        for \(i_{1} \in \operatorname{anc}(i)\)
            for \(j_{1} \in \operatorname{anc}(j)\) do
            \(D\left(T_{1}\left[1\left(i_{1}\right) . . i\right] . T_{2}\left[l\left(j_{1}\right) \ldots j\right]\right)=\min \{\)
    \(D\left(T_{1}\left[1\left(j_{1}\right) \ldots i-1\right] . T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)-\gamma\left(T_{[ }[i]-1\right)\),
    \(D\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right] . T_{2}\left[1\left(j_{1}\right) \ldots j-1\right]\right)-\gamma\left(A-T_{2}[j]\right)\).
    \(\left.D\left(T_{1}\left[1\left(i_{1}\right) \ldots l(i)-1\right], T_{2}\left[1\left(j_{1}\right) \ldots l(j)-1\right]\right)-D\left(T_{1}[1(i) \ldots i-1], T_{2}[1(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)\right\}\)
    end
    PAREND
end
```

Theorem 2: Parallel Distance Algorithm is correct and has time complexity $\mathrm{O}\left(\mathrm{N}_{1}-\mathrm{N}_{2}\right)$.
Proof:
The first two initializations are the same as in the Basic Distance algorithm. Let us consider the general case. For i and j within PARBEGIN and PAREND, $i-j=k$. We now show that all the terms used in the min expressions bave been previously computed (so there are no interdependencies among the terms calculated for a given value of k). In the first term $i-1-j=k-1<k$. In the second term $\mathrm{i}-\mathrm{j}-1=\mathrm{k}-1<\mathrm{k}$. In the third term $\mathrm{l}(\mathrm{i})-1-1(\mathrm{j})-1 \leq \mathrm{i}-1-\mathrm{j}-1=\mathrm{k}-2<\mathrm{k}$. In the fourth term $\mathrm{i}-1-\mathrm{j}-1=\mathrm{k}-2<\mathrm{k}$.

Since no sequential loop is executed more than $N_{1}-N_{2}$ times, the Parallel Distance algorithm bas time complexity $O\left(X_{1}-\lambda_{2}\right)$.

4. k-distance problem

Here we show how to solve a specialization of tree distance in better time.
Given two trees T_{1} and T_{2} and a number k, we would like to know if the distance $\delta\left(T_{1}, T_{2}\right)$ is less than k or not and in case it is less than k to give the actual value of $\delta\left(T_{1}, T_{2}\right)$. For simplicity, we assume that the cost for insert and delete is 1 . (An easy generalization to arbitrary costs for insertion and deletion is to take the minmum insert or delete cost c and then replace k by k / c everywhere, including in the complexity measures.)

Though we can use our general tree distance algorithm to solve the above problem, we have a more efficient method. Our algorithm has time complexity $\mathrm{O}\left(\mathrm{k} \times \min \left(\mathrm{N}_{1}, \mathrm{~N}_{2}\right) \times \mathrm{L}_{1} \times \mathrm{L}_{2}\right)$ or $O\left(k^{2} \times \min \left(N_{1}, N_{2}\right) \times \min \left(L_{1}, L_{2}\right)\right.$. Note that if k is small, this is a big improvement over the Basic Distance Algorithm.

As always. we take our inspiration from strings. The following algorithm is a simple $\mathrm{O}(\mathrm{k} \times$ $\min \left(\mathcal{N}_{1}, \aleph_{2}\right)$) algorithm for the k-distance problem among strings.

```
for \(\mathrm{i}:=1\) to N :
    for \(\mathrm{j}:=\max \left(\mathrm{i}-\mathrm{k}_{\mathrm{k}}, 1\right)\) to \(\min \left(\mathrm{i}-\mathrm{k}_{\mathrm{N}}, \mathrm{N}_{2}\right)\) begin
        if \(\mathrm{T}_{1}[\mathrm{i}]=\mathrm{T}_{2}[\mathrm{j}]\)
            then \(\mathrm{d}:=0\)
            else \(\mathrm{d}:=1\) :
        \(D(\mathrm{i}, \mathrm{j})=\min \{D(\mathrm{i}, \mathrm{j}-1)-1, D(\mathrm{i}-1, \mathrm{j})-1, D(\mathrm{i}-1, \mathrm{j}-1)-\mathrm{d}\}\)
    end;
```

The idea is that we do not need to compute any $D(i, j)$ such that $|i-j|>k$. The reason is that for those $D(i, j), D(i, j) \geq k$. Hence such terms will not be useful in any later computation.

The difficulty in the tree case is that even if $D\left(T_{1}[1 \ldots i], T_{2}[1 . . j]\right)$ is greater than k, $D\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right] . T_{2}\left[1\left(j_{1}\right) . . j\right]\right)$ may be smaller than k, where $i_{1} \in \operatorname{anc}(i)$ and $j_{1} \in \operatorname{anc}(j)$. Our next lemma shows that we don't have to worry about such terms.

Lemma 6:
If $D\left(T_{1}[1 \ldots i], T_{2}[1 \ldots j]\right)>k$, then in any mapping from $T_{1}\left[1 \ldots i^{\prime}\right]$ to $T_{2}\left[1 \ldots j^{\prime}\right]$ such that $D\left(T_{1}\left[1 \ldots i^{\prime}\right], T_{2}\left[1 . . j^{\prime}\right]\right) \leq k$, no minimal mapping from $T_{1}\left[1\left(i_{1}\right) \ldots i\right]$ to $T_{2}\left[l\left(j_{1}\right)\right.$..j] will be used (i.e. it will nor be a submapping).?

Proof:

By contradiction. If a minimal mapping from $T_{1}\left[1 \ldots i^{\prime}\right]$ to $T_{2}\left[1 . j^{\prime}\right]$ uses any minimal mapping from $T_{1}\left[1\left(i_{1}\right) . . i\right]$ to $T_{2}\left[1\left(j_{1}\right) . . j\right]$, then from the conditions a mapping must follow we know that $\mathrm{T}_{1}\left[1 . .1\left(\mathrm{i}_{1}\right)-1\right]$ must map to $\mathrm{T}_{2}\left[1 . .1\left(\mathrm{j}_{1}\right)-1\right]$. Therefore, $\mathrm{D}\left(\mathrm{T}_{1}\left[1 \ldots 1\left(\mathrm{i}_{1}\right)-1\right], \mathrm{T}\left[1 . .1\left(\mathrm{j}_{1}\right)-1\right]\right)$ $-D\left(T_{1}\left[1\left(i_{1}\right) . . i\right], T_{2}\left[1\left(\mathrm{j}_{1}\right) . . \mathrm{j}\right]\right) \quad \geq \mathrm{D}\left(\mathrm{T}_{1}[1 . . \mathrm{i}], \mathrm{T}_{2}[1 . . \mathrm{j}]\right)>\mathrm{k}$ This would imply that $D\left(T_{1}\left[1 . i^{\prime}\right], T_{2}\left[1 . . j^{\prime}\right]\right)>k$.

Now it is easy to see how the algorithm works. We only compute $D\left(T_{1}\left[1\left(i_{1}\right), . i\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right.$ when $|j-j| \leq k$. In the compuration if we need to use $D\left(T_{1}\left[l\left(i_{1}\right) \ldots i\right], T_{2}\left[l\left(j_{1}\right)\right.\right.$...j] such that $|i-j|>k$, we just substitute the value $k-1$. So, the general step of the algorithm becomes:

[^1]```
for \(\mathrm{i}:=1\) to \(\mathrm{N}_{1}\)
 for \(\mathrm{j}:=\max (\mathrm{i}-\mathrm{k}, \mathrm{l})\) to \(\min \left(\mathrm{i}-\mathrm{k}, \mathrm{V}_{\mathrm{z}}\right)\)
 for \(i_{1} \in \operatorname{anc}(i)\)
 for \(j_{1} \in \operatorname{anc}(j)\) begin
 inner loop computation from Basic Distance Algorithm
```

            The complexity is clearly \(O\left(k \times \min \left(\mathcal{N}_{1}, N_{2}\right) \times L_{1} \times L_{2}\right)\). But we can do better. For each
                \(T_{1}\left[l\left(i_{1}\right) \ldots i\right]\), there are at most \(2 k\) terms from \(T_{2}\left[1\left(j_{1}\right) \ldots j\right]\) such that \(D\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right] \leq k\right.\).
                Therefore we can manage to have an algorithm with complexity \(O\left(k^{2} \times \min \left(N_{1}, N_{2}\right) \times\right.\)
    $\left.\min \left(L_{1}, L_{2}\right)\right)$.
for $\mathrm{i}:=1$ to $\mathrm{N}_{1}$
for $\mathrm{j}:=\max (\mathrm{i}-\mathrm{k}, 1)$ to $\min \left(\mathrm{i}-\mathrm{k}, \mathrm{N}_{2}\right)$
for $i_{1} \in \operatorname{anc}(i)$
for $j_{1} \in \operatorname{anc}(j)$
such that $\left|\left(i-1\left(i_{1}\right)\right)-\left(j-1\left(j_{1}\right)\right)\right| \leq k$
inner loop computation from Basic Distance Algorithm

To take advantage of other heuristics, the following lemma is useful.

## Lemma 7:

If $D\left(T_{1}[1 \ldots i], T_{2}[1 \ldots j]\right)-D\left(T_{1}[i-1 \ldots!], T_{2}\left[j-1 \ldots l_{2}\right]\right)>k$, then in computing $D\left(T_{1}, T_{2}\right) \leq k$ $D\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) . . . j\right]\right.$ will not be useful.

In general, to use the lemma 6 one must compute $2 k$ diagonals whereas using lemma 7 only $k$ diagonals are needed. Another way to use this lemma is to estimate $D\left[T_{1}[1 . . i], T_{2}[1 \ldots j]\right.$ and $\mathrm{D}\left[\mathrm{T}_{1}\left[\mathrm{j}-1 \ldots \mathrm{~N}_{1}\right], \mathrm{T}_{2}\left[j-1 \ldots \mathrm{~V}_{2}\right]\right.$ using less expensive heuristics such as string matching or label counting and then to disregard unhelpful intermediate mappings.

The parallel time for this algorithm is the same as for the Basic Distance algorithm but only $O(k$ $\times L_{1} \times L_{2}$ ) are needed.

## 5. Distance algorithm as a general technique

Many problems in strings can be solved with dynamic programming. Similarly, our algorithm not only applies to tree distance but also provides a way to do dynamic programming for a variety of tree problems.

Here is the general pattern (assuming a postorder traversal):

```
empty_initialization
```

for $\mathrm{i}:=1$ to $\mathrm{N}_{1}$
for $i_{1} \in \operatorname{anc}(\mathrm{i})$
left_initialization
for $\mathrm{j}:=1$ to $\mathrm{N}_{2}$
for $j_{1} \in \operatorname{anc}(j)$ begn
right_initialization

```
for i:= 1 to Ni
 for j:= 1 to N゙=
 foril}\in\operatorname{anc(i)
 for jl & anc(j) begin
 general_term_computation
```

In the next two sections, we give four examples of apparently more complex problems that can be solved by the same technique and in the same (serial and parallel) time and space complexity as the Basic Distance algorithm.

## 6. Removals at a vertex

### 6.1. Single Remove subtrees from one tree

In this section, we consider the calculation of the minimum distance between two trees with a subtree removed from one of them.

T


$$
\text { Remove subtree rooted at } \mathrm{T}[8]
$$

The problem is as follows: Given trees $T_{1}$ and $T_{2}$, we want to know what is the minimum distance between $T_{1}$ uith a subtree removed and $T_{2}$.

Let DR1( $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right)\right.$.. i$], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right)\right.$.. j$\left.]\right)$ denote the minimum distance between $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right)\right.$.. i$]$ and $T_{2}\left[1\left(j_{1}\right) \ldots j\right]$ such that one subtree is removed from $T_{1}\left[1\left(i_{1}\right) \ldots i\right]$. The following initialization and general term computation steps will give us an algorithm. Note D() is the distance in the sense of the Basic Distance Algorithm.

Algorithm Single Subtree Removal

```
empty_initialization:
DR1(\varnothing,\varnothing)=
left_initialization:
DR1(T, [l(i) ..i]. }|)=min
 D(T,{1(\mp@subsup{i}{1}{})..l(i) - 1].\varnothing),
 DR1(T, [1(\mp@subsup{i}{1}{})\ldotsi-1],\varnothing)-\gamma(T, [i]-1)}
```

right_initialization:
$\operatorname{DR} 1\left(\varnothing, \mathrm{~T}_{2}\left[1\left(\mathrm{j}_{1}\right) . . \mathrm{j}\right]\right)=\infty$
general_term_computation
$\operatorname{DR} 1\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(i_{1}\right) \ldots j\right]\right)=\min \{$
$D\left(T_{1}[1(i \cdot) \ldots l(i)-1] T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)$,
$\operatorname{DR} 1\left(\mathrm{~T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}-1\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{2}\right) \ldots \mathrm{j}\right)-\gamma\left(\mathrm{T}_{1}[\mathrm{i}]-1\right)\right.$,
$\operatorname{DR} 1\left(\mathrm{~T}_{1}\left[1\left(1_{1}\right) \ldots 1\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots j-1\right]\right)-\gamma\left(1-\mathrm{T}_{2}[\mathrm{j}]\right)$.
$\operatorname{DR} 1\left(T_{1}\left[l\left(i_{1}\right) \ldots l(i)-1\right] . T_{2}\left[l\left(i_{i}\right) \ldots l(j)-1\right]\right)-D\left(T_{1}[1(1) \ldots i-1], T_{2}[l(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)$,
$\left.D\left(T_{1}\left[1\left(i_{1}\right) \ldots l(i)-1\right], T_{2}\left[1\left(j_{2}\right) \ldots l(j)-1\right]\right)-D R 1\left(T_{i}[1(1) \ldots i-1], T_{2}[1(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)\right\}$
Lemma 8: Single Subtree Removal algorithm is correct.

Proof:
First the empty_initialization and right_initialization are correct because no subtree can be removed from an empty tree.

For the left_initialization there are two cases. Either subtree $T_{1}[1(i)$.. i] should be removed, in which case $\operatorname{DR} 1\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], \varnothing\right)=D\left(T_{1}\left[1\left(i_{1}\right) . .1(i)-1\right], \varnothing\right)$; or a subtree in $T_{1}\left[1\left(i_{1}\right) \ldots i-1\right]$ should be removed, in which case $\left.\operatorname{DR} 1\left(\mathrm{~T}_{1}\left[l\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right] . \varnothing\right)=\operatorname{DR} 1\left(\mathrm{~T}_{1}\left[l\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}-1\right], \varnothing\right)-\gamma\left(\mathrm{T}_{1}[\mathrm{i}]-\mathrm{A}\right)\right\}$

Hence the left_initialization is correct.
Now let us consider the general_term_computation.
Case (1): subtree $\mathrm{T}_{1}[1(\mathrm{i}) . . \mathrm{i}]$ is removed. So, $\operatorname{DR} 1\left(\mathrm{~T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right)\right.\right.$.. j$\left.]\right)=$ $D\left(T_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots l(\mathrm{i})-1\right], T_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)$

Case (2): subtree $\mathrm{T}_{1}[1(\mathrm{i})$.. i$]$ is not removed. Consider the best mapping between $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right)\right.$.. i$]$ and $\mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right)\right.$.. j$]$ with one subtree removed from $\mathrm{T}_{1}\left[1\left(i_{1}\right)\right.$.. i$]$.

There are three subcases.

```
subcase 1: i is not in the mapping. In this case,
DR1(T}\mp@subsup{T}{1}{[l(\mp@subsup{i}{1}{}).. i],T T [l(j) (j) .. j])=
```


subcase $2: \mathrm{j}$ is not in the mapping. In this case,
$\operatorname{DR1}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)=$
$\operatorname{DR} 1\left(\mathrm{~T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}-1\right]\right)-\gamma\left(\mathrm{A}-\mathrm{T}_{2}[\mathrm{j}]\right)$,
subcase $3: i$ and $j$ are both in the mapping.
In this case there are two different situation.
3a: subtree is from $T_{1}\left[1\left(i_{1}\right) \ldots l(i)-l\right]$. In this case,
$\operatorname{DR} 1\left(\mathrm{~T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)=$

$$
\operatorname{DR} 1\left(T_{1}\left[1\left(i_{1}\right) \ldots 1(i)-1\right], T_{2}\left[1\left(j_{1}\right) \ldots 1(j)-1\right]\right)-D\left(T_{1}[1(i) \ldots 1-1], T_{2}[1(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)
$$

3b: subtree is removed from $T_{1}[1(\mathrm{i}) \ldots \mathrm{i}-1]$. In this case,
$\operatorname{DR} 1\left(T_{1}\left[l\left(i_{1}\right) \ldots i\right], T_{2}\left[l\left(j_{1}\right) \ldots j l\right)=\right.$
$\left.D\left(T_{1}\left[1\left(i_{1}\right) \ldots l(i)-1\right], T_{2}\left[1\left(j_{1}\right) . .1(j)-1\right]\right)-D R 1\left(T_{1}[1(i) \ldots i-1], T_{2}[1(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)\right\}$. $\square$

### 6.2. Prune subtrees from one tree

In this section, we consider a similar problem, the calculation of the minimum distance between two trees with a pruning at a node of one of the trees. By pruning at $\mathrm{T}[\mathrm{i}]$, we mean removing of all the proper descendants of $\mathrm{T}[\mathrm{i}]$ but keeping $\mathrm{T}[\mathrm{i}]$ itself. (Thus, a prunng never eliminates the entire tree.)


Pruning at $\mathrm{T}[8]$-- remove all its proper descendants

Formally: Given trees $T_{1}$ and $T_{2}$, we want to know what is the minimum distance between $T_{1}$ that has been pruned at some node and $T_{2}$.

A naive application of our distance algorithm would require $O\left(N_{1} \times\right.$ the time to run the tree distance algorithm). We now give a algorithm to do it directly.

We need the following (slightly counterintuitive) definition. A pruning for $T_{1}\left[1\left(i_{1}\right)\right.$.. i] can mean
i) there is a pruning at one node in $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right]$; or
ii) there is a pruning at $p(i)$, but this is only allowed if all the proper descendants of $p(i)$ are in $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right]$.

We denote the condition by the predicate arewithin $\left(i, i_{1}\right)$. This holds if and only if $l\left(i_{1}\right) \leq l(p(i))$ and $i$ is the rightmost child of $p(i)$.

Let $\operatorname{DP} 1\left(\mathrm{~T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)$ denote the minimum distance between $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots\right.$ i] and $\mathrm{T}_{2}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{j}\right]$ such that there is a pruning for $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right]$.

The following initialization and general term computation steps will give us an algorithm. Again, $D()$ is the distance in the sense of the Basic Distance algorithm

Algorithm Single Prune
empty_initialization:
$\operatorname{DP1}(\varnothing, \varnothing)=x$
left_initialization:
$\operatorname{DP1}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \varnothing\right)=$
$\operatorname{DP} 1\left(\mathrm{~T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}-1\right], \varnothing\right)-\gamma\left(\mathrm{T}_{1}[\mathrm{i}]-.1\right)$
if arewithin( $\mathrm{i}, \mathrm{i}_{1}$ ) then
$\operatorname{DP} 1\left(\mathrm{~T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \varnothing\right)=\min \{$
DP1( $\left.\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \varnothing\right)$.
$\left.\mathrm{D}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) . .1(\mathrm{p}(\mathrm{i}))-1\right], \mathcal{Z}\right)\right\}$
right_initialization:
$\operatorname{DP} 1\left(\varnothing, T_{2}\left[1\left(\mathrm{j}_{1}\right) . . j\right]\right)=x$
general_term_computation
$\operatorname{DP1}\left(T_{1}\left[1\left(i_{i}\right) \ldots i\right], T_{z}\left[1\left(j_{1}\right) \ldots j\right]\right)=\min \{$
$\operatorname{DP} 1\left(\mathrm{~T}_{1}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{i}-1\right] . \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)-\gamma\left(\mathrm{T}_{1}[\mathrm{i}]-1\right)$.
$\operatorname{DP} 1\left(T_{1}\left[1\left(i_{1}\right) \ldots 1\right], T_{2}\left[1\left(j_{1}\right) \ldots j-1\right]\right)-\gamma\left(1-T_{2}[j]\right)$.
$\operatorname{DP} 1\left(T_{1}\left[1\left(i_{1}\right) \ldots 1(i)-1\right], T_{2}\left[1\left(j_{1}\right) \ldots 1(1)-1\right]\right)-D\left(T_{1}[1(i) \ldots i-1], T_{2}[1(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)$,
$\left.D\left(T_{1}\left[1\left(i_{i}\right) \ldots l(\mathrm{i})-1\right], T_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots l(\mathrm{j})-1\right]\right)-\mathrm{DP} 1\left(\mathrm{~T}_{:}[1(\mathrm{i}) \ldots \mathrm{i}-1], \mathrm{T}_{2}[1(\mathrm{j}) \ldots \mathrm{j}-1]\right)-\gamma\left(\mathrm{T}_{1}[\mathrm{i}]-\mathrm{T}_{2}[\mathrm{j}]\right)\right\}$
if arewithin( $\left(. i_{1}\right)$ then
$\operatorname{DP} 1\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T=\left[1\left(j_{1}\right) \ldots j\right]\right)=\min \{$
$\operatorname{DPI}\left(\mathrm{T}_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)$,
$\left.D\left(T_{1}\left[l\left(i_{1}\right) \ldots l(p(i))-1\right], T_{2}\left[l\left(j_{1}\right) \ldots j\right]\right)\right\}$

Lemma 9: Algorithm Single Prune is correct.
Proof:
First the empty_initialization and right_initialization are correct because no pruning can occur on an empty tree.

For the left_initialization there are two cases. If all descendants of $p(i)$ are in $T_{1}\left[1\left(i_{1}\right) \ldots i\right]$, we can prune at $p(i)$. That means we remove $\mathrm{T}_{1}[1(\mathrm{p}(\mathrm{i}))$.. i$]$. In this case $\operatorname{DP1}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right)\right.\right.$.. $i], \varnothing)=D\left(T_{1}\left[1\left(i_{1}\right) . . l(p(i))-1\right], \varnothing\right)$. Otherwise, we can prune for $T_{1}\left[1\left(i_{1}\right)\right.$.. $\left.i-1\right]$, giving cost $\left.\operatorname{DP} 1\left(\mathrm{~T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \varnothing\right)=\operatorname{DR} 1\left(\mathrm{~T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}-1\right], \varnothing\right)-\mathrm{g}\left(\mathrm{T}_{1}[\mathrm{i}]-\mathrm{A}\right)\right\}$.

Hence the left_initialization is correct.
Now let us consider the general_term_computation.

First there are two cases:
Case (1): $\mathrm{T}_{1}[1(\mathrm{p}(\mathrm{i}))$.. i$]$ is removed. So,
$\operatorname{DP} 1\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)=$
$D\left(T_{1}\left[1\left(i_{1}\right) . .1(p(i))-1\right], T_{2}\left[1\left(j_{1}\right) . . j\right]\right)$
Note: this case is conditional, depending on if all the descendants of $p(i)$ are in $T_{1}\left[1\left(i_{1}\right)\right.$.. i], i.e. arewithin $\left(i, 1_{1}\right)$.

Case (2): $T_{1}[1(p(i))$.. $i]$ is not removed.
Consider the best mapping between $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right]$ and $\mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]$ with a pruning at a node in $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right]$.
There are three subcases.
subcase $1: \mathrm{i}$ is not in the mapping. In this case,
$\operatorname{DP1}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) . . \mathrm{j}\right]\right)=$
$\operatorname{DPl}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}-1\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)-\gamma\left(\mathrm{T}_{1}[\mathrm{i}]-1\right)$,
subcase 2 : j is not in the mapping. In this case,
$\operatorname{DP1}\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)=$
$\operatorname{DP} 1\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) \ldots j-1\right]\right)-\gamma\left(A-T_{2}[j]\right)$.
subcase 3 : $i$ and $j$ are both in the mapping.
In this case there are two different situations.
3a: There is a pruning for $\mathrm{T}_{1}\left[1\left(i_{1}\right) \ldots 1(\mathrm{i})-1\right]$. In this case, $\operatorname{DP1}\left(T_{1}\left[1\left(i_{1}\right) . . i\right], T_{2}\left[1\left(j_{1}\right) . . j\right]\right)=$ $\operatorname{DPl}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) . .1(\mathrm{i})-1\right], \mathrm{T}_{2}\left[1\left(\mathrm{i}_{1}\right) . .1(\mathrm{j})-1\right]\right)-\mathrm{D}\left(\mathrm{T}_{1}[1(\mathrm{i}) . . \mathrm{i}-1] . \mathrm{T}_{2}[1(\mathrm{j}) \ldots j-1]\right)-\gamma\left(\mathrm{T}_{1}[\mathrm{i}]-\mathrm{T}_{2}[\mathrm{j}]\right)$

3b: There is a pruning for $\mathrm{T}_{1}[1(\mathrm{i}) \ldots \mathrm{i}-1]$. In this case,
$\operatorname{DPl}\left(T_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) . . \mathrm{j}\right]\right)=$
$\left.D\left(T_{1}\left[1\left(i_{1}\right) \ldots 1(i)-1\right], T_{2}\left[1\left(j_{1}\right) \ldots 1(j)-1\right]\right)-D P 1\left(T_{1}[1(i) \ldots i-1] \cdot T_{2}[1(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)\right\}$

## 7. Approximate tree matching

We consider here approximate tree matching. Hoffman and O'Donnell [HO-82] have proposed an algorithm for exact tree matching. To generalize the problem, we first consider approximate matching [S-80, U-83. U-85, LV-86] for strings. The problem is to compute, for each i , the minimum number of editing operations between the "pattern" string PAT[1..|PAT|] and the "text string" TEXT[1..i] with a prefix removed (from TEXT). (Intuitively, the algorithm finds the "occurrence" in TEXT that most close! matches PAT.)

To study this problem to trees, we must generalize the notion of prefix. For us, a prefix will mean a collection of subtrees. These subtrees can be arbitrary or can arise as a result of zero or more prunings (section 6.2). We consider each generalization in turn.

### 7.1. Remove any number of subtrees from TEXT tree

The problem is as follows: Given trees $T_{1}$ and $T_{2}$, we want to know what is the minimum distance between $T_{1}$ with zero or more subtrees removed and $T_{2}$.

Let $\operatorname{DR}\left(T_{i}\left[1\left(i_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{j}\right]\right)$ denote the minimum distance between $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right)\right.$.. i] and $\mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right)\right.$.. j$]$ with zero or more subtrees removed from $\mathrm{T}_{1}\left[1\left(i_{1}\right)\right.$.. i$]$.

Algorithm Many Subtree Removal

```
empty_initialization:
DR \((\varnothing, \varnothing)=0\)
left_initialization:
\(\operatorname{DR}\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], \varnothing\right)=0\)
right_initialization:
\(\operatorname{DR}\left(Z, T_{2}\left[1\left(j_{1}\right) . . j\right]\right)=\operatorname{DR}\left(Z, T_{2}\left[1\left(j_{1}\right) . . j-1\right]\right)-\gamma\left(1-T_{2}[j]\right)\)
general_term_computation
\(\operatorname{DR}\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)=\min \{\)
 \(\operatorname{DR}\left(T_{1}\left[1\left(i_{1}\right) . . l(i)-1\right], T_{2}\left[l\left(j_{1}\right) . . j\right]\right)\),
 \(\operatorname{DR}\left(T_{1}\left[1\left(i_{1}\right) \ldots i-1\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)-\gamma\left(T_{1}[i]-1\right)\),
 \(\operatorname{DR}\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(j_{1}\right) \ldots j-1\right]\right)-\gamma\left(\Lambda-T_{2}[j]\right)\),
 \(\left.\operatorname{DR}\left(T_{1}\left[1\left(i_{1}\right) . .1(i)-1\right], T_{2}\left[1\left(j_{1}\right) . .1(j)-1\right]\right)-\operatorname{DR}\left(T_{1}[1(i) . . i-1], T_{2}[1(j) . . j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)\right\}\)
```

Lemma 10: Algorithm Many Subtree Removal is correct.
Proof:
First we show that the initialization is correct. The empty-initialization and the right_initialization is the same as in the tree distance algorithm. The left-initialization $\mathrm{DR}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) . . \mathrm{i}\right], \varnothing\right)=0$ is correct, because we can remove all of $\mathrm{T}_{1}\left[l\left(\mathrm{i}_{1}\right)\right.$.. $\left.i\right]$.

For the general term $\operatorname{DR}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right)\right.\right.$.. i$\left.], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)$, we ask first whether the subtree $\mathrm{T}_{1}[1(\mathrm{i})$.. i] is removed or not. If it is removed, then the distance should be $\operatorname{DR}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots 1(\mathrm{i})-1\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots\right.\right.$ j]) giving the first term of the minimization. Otherwise, consider the mapping between $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right)\right.$.. i$]$ and $T_{2}\left[1\left(\mathrm{j}_{1}\right)\right.$.. $\left.j\right]$ after we perform an optimal removal of subtrees of $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right)\right.$.. i$]$. To compute this
mapping, we have the same three cases as in the tree distance algorithm. Hence the general term should be the minimum of above four terms.

### 7.2. Prune at any number of nodes from the TEXT tree

Given trees $T_{1}$ and $T_{2}$, we want to know what is the minimum distance between $T_{1}$ and $T_{2}$ when there have been zero or more prunings at nodes of $\mathrm{T}_{1}$.

Let $\operatorname{DP}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)$ denote the minimum distance between $\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right)\right.$.. i$]$ and $\mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right)\right.$.. j$]$ with zero or more prunings for $\mathrm{T}_{1}\left[1\left(i_{1}\right)\right.$.. i$]$. (Refer to section 6.2 for the definition of "pruning for".) The following initialization and general term computation steps will give us an algorithm to solve our problem.

Algorithm Many Prunings

```
empty_initialization:
\(\mathrm{DP}(\varnothing, \varnothing)=0\)
left_initialization:
\(\operatorname{DP}\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], \ell\right)=\)
 \(\operatorname{DP}\left(T_{1}\left[1\left(i_{1}\right) \ldots i-1\right], \varnothing\right)-\gamma\left(T_{1}[i]-.1\right)\)
if arewithin \(\left(i, i_{1}\right)\) then
 \(\operatorname{DP}\left(\mathrm{T}_{1}\left[1\left(i_{1}\right) \ldots \mathrm{i}\right], \varnothing\right)=\)
 \(\operatorname{DP}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) . .1(\mathrm{p}(\mathrm{i}))-1\right] . C\right)\)
```

right_initialization:
$\operatorname{DP}\left(\varnothing, T_{2}\left[1\left(j_{1}\right) . . j\right]\right)=\operatorname{DP}\left(\mathscr{C}^{X}, T_{2}\left[1\left(j_{1}\right) . . j-1\right]\right)-\gamma\left(1-T_{2}[j]\right)$
general_term_computation
$\operatorname{DP}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)=\min \{$
$\operatorname{DP}\left(T_{1}\left[1\left(i_{1}\right) \ldots i-1\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)-\gamma\left(T_{1}[i]-i\right)$,
$D P\left(T_{1}\left[1\left(i_{1}\right) \ldots i\right], T_{2}\left[1\left(i_{1}\right) \ldots j-1\right]\right)-\gamma\left(1-T_{2}[j]\right)$,
$\left.\operatorname{DP}\left(T_{1}\left[l\left(i_{1}\right) \ldots l(i)-1\right], T_{2}\left[1\left(j_{1}\right) \ldots l(j)-l\right]\right)-\operatorname{DP}\left(T_{1}[l(i) \ldots i-l], T_{2}[1(j) \ldots j-1]\right)-\gamma\left(T_{1}[i]-T_{2}[j]\right)\right\}$
if arewithin $\left(i, i_{1}\right)$ then
$\operatorname{DP}\left(\mathrm{T}_{1}\left[1\left(i_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)=\min \{$
$\operatorname{DP}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right], \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) \ldots \mathrm{j}\right]\right)$,
$\left.\operatorname{DP}\left(T_{1}\left[l\left(i_{1}\right) . . l(p(i))-l\right], T_{2}\left[1\left(j_{1}\right) \ldots j\right]\right)\right\}$

Lemma 11: Algorithm Many Prunings is correct.
Proof:
First we show that the initialization is correct. The empty-initialization and the right_initialization is the same as in the tree distance algorithm. For left-initialization, if we can remove $T_{1}[l(p(i)) \ldots i]$ (prune at $\left.p(i)\right)$ then $D P\left(T_{1}\left[l\left(i_{1}\right) \ldots i\right], \varnothing\right)=D P\left(T_{1}\left[l\left(i_{1}\right) \ldots l(p(i))-1\right], \varnothing\right)$. Otherwise $\operatorname{DP}\left(\mathrm{T}_{1}\left[1\left(i_{1}\right) \ldots i\right], \varnothing\right)=\operatorname{DP}\left(\mathrm{T}_{1}\left[1\left(i_{1}\right) \ldots \mathrm{i}-1\right], \varnothing\right)-\gamma\left(\mathrm{T}_{1}[\mathrm{i}]-1\right)$. Hence the left_initialization is correct.

For the general term $\operatorname{DP}\left(\mathrm{T}_{1}\left[1\left(\mathrm{i}_{1}\right) \ldots \mathrm{i}\right] . \mathrm{T}_{2}\left[1\left(\mathrm{j}_{1}\right) . . j\right]\right)$, we ask first whether $\mathrm{T}_{1}[1(\mathrm{p}(\mathrm{i}))$.. i$]$ is removed or not. If it is removed, then the distance should be $\operatorname{DP}\left(T_{1}\left[l\left(i_{1}\right) . . l(p(i))-1\right], T_{2}\left[l\left(j_{1}\right) .\right.\right.$. jl) giving the first term of the minimization. Otherwise, consider the mapping between $T_{1}\left[1\left(i_{1}\right)\right.$.. i] and $T_{2}\left[1\left(j_{1}\right)\right.$.. $\left.j\right]$ after we perform an optimal number of prunings for $T_{1}\left[1\left(i_{1}\right)\right.$.. $\left.i\right]$. Now we have
the same three cases as in the trec distance algorithm. Hence the gencral term should be the minmum of above four terms.

Let us now condiser the problem of approximate tree matching. In above algorithm, let $T_{1}$ be TEXT and $T$ : be PAT and set all cost be 1 . We have now a algorithm for approximate tree matching. The result is in $\mathrm{D}\left(\operatorname{TEXT}\left[1(\mathrm{i})\right.\right.$.. $\left.\|, \operatorname{PAT}\left[1 \ldots \mathcal{N}_{2}\right]\right)$ where $1 \leq i \leq \mathcal{N}_{1}$. Note that if i is not only child of its parent, we need to check if $\mathrm{D}\left(\mathbb{Z}, \operatorname{PAT}\left[1 \ldots \mathrm{C}_{2}\right]\right)$ is smaller than $\mathrm{D}(\mathrm{TEXT}[1(\mathrm{i})$.. i],PAT[1.. $\therefore 2 \mathrm{l}$ ).

## 8. Conclusion

We present a simple dynamic programming algorithm for tree distance which

1. has better tume and space complexity than any in the literature;
2. is efficiently parallelizable:
3. can be specialized to the $k$-distance problem for trees with much improved efficiency; and
4. is generalizable to approximate tree matching problems.

Our research suggests two broad avenues for further algorithmic work. First, we would like to generalize these algorthms to unordered trees. Second, we would like to consider distance metrics other than editing distance

## Acknouledgement

We would like to thank Bob Hummel for helpful discussions.

HO-82.
C. M. Hoffmann and M. J. O'Donnell, "Pattern matching in trees," J. ACM 29, No. 1 pp. 68.95 (1982).
L. 79.
S. Y. Lu, "A tree-to-tree distance and its application to cluster analysis," IEEE Trans. on PAMI PAMI-1, No. 2 pp. 219-224 (1979).

LV-86.
G. M. Landau and U. Vishkin, "Introducing efficient parallelism into approximate string matching and a new serial algorithm," Proc. 18th ACM Syposium on Theory of Computing, pp. 220-230 (1986).
S-80.
P.H. Sellers, "The theory and computation of evolutionary distances," J. of Algorithm 1 pp. 359-373(1980).
T.79.

Kuo-Chung Tai, "The tree-to-tree correction problem," J. ACM 26 pp . 422-433 (1979).
U. 83 .
E. Ukkonen, "On approximate string matching," Proc. Int. Conf. Found. Comp. Theor, Lecture notes in Computer Science $158 \mathrm{pp} .487-495$ Springer-Verlag, (1983).
U-85.
E. Ukkonen, "Finding approximate pattern in strings," J. of Algorithms 6 pp. 132-137 (1985).

## WF-74.

R. Wagner and M. Fisher, "The string-to-string correction problem," J. ACM 21 pp. 168-178 (1974).
Z-83.
Kaizhong Zhang, An algorithm for computing similarity of trees, Technical Report, Mathematics Department Peking University 1983.
C. 1 Zhang, Kaizhong
On the editing distance between trees and related problems

$$
\begin{aligned}
& \text { NYU COMPSCI TR-3l0 c.l- } \\
& \text { Zhang, Kaizhong } \\
& \text { On the editing distance } \\
& \text { between trees and related } \\
& \text { problems }
\end{aligned}
$$



This book mey be kept

A fine will be charged for each day the book is kept overtime.

| A fine win be clarger |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |


[^0]:    !- Note that our definition of mapping is different from the definition in [T-79]. We believe that our definition is more natural because it does not depend on any traversal ordering of the :ree.

[^1]:    '. This lemma afplies to general costs. so we may do better by using it instead of replacing $k$ by $k c$ as we proposed above.

