
On

On the Editing Distance Between Trees and Related Problems

by

Kaizhong Zhang

Dennis Shasha

Ultracomputer Note 122

NYU Computer Science Technical Report 310

August, 1987

This work was supported in part by the National Science Foundation under grant number
DCR8501611, by the Office of Naval Research under grant number N00014-85-K-0046, and by the

Supercomputing Research Center.

ABSTRACT

Since a tree can represent a scene description, a grammar parse, a structural

description, and many other phenomena, comparing trees is a way to compare
scenes, parses and so on. We consider the distance between two trees to be the

(weighted) number of edit operations (insert, delete, and modify) to transform one

tree to another. Then, we consider the following kinds of questions:

1. What is the distance between two trees?

2. What is the minimum distance between Ti and T2 with an arbitrary subtree re-

moved? V^hat if zero or more subtrees can be removed from Ti'' A specialization

of these algorithms solves the problem of approximate tree matching.

3. Given k, are Tj and Tt within distance k of one another and if so what is their

distance?

We present a postorder dynamic programming algorithm to solve question 1 in

sequential time 0(jTi
|

x jT;
|

x depthiTi^ x depth! Ti)) compared with 0(
|Ti

i

X |T;
i

X (depth(Ti))- x (depth(T2)
)") for the best previous algorithm

due to Tai. Further, our algorithm can be parallelized to give time 0(
|Ti]+ |T; |). Our approach extends to answer question 2 giving an algorithm of

the same complexity. For question 3, a variant of our distance algorithm yields an

0(k- X min(|Ti |. jTi '

)
x min(depth(Ti) ,depth(T2))) algorithm.

1. Editing distance between two trees

Ordered labeled trees are trees in which the left-to-right order among siblings is significant.

The distance between such trees is a generalization of the distance between strings.

The following definitions are basically from [T-79, WF-74]. Let Ti and T; be two trees with

N'l and N; nodes respectively. Suppose that we have an ordering for each tree and T;[i] means the

ith node of tree Tj in the given ordering T[i..j] is the subtree of T whose nodes are numbered i to
j

inclusive. If i > j, then T[i..j] = 0. An edit operation is a pair (a,b) ^ (A,A) of strings of length

less than or equal to 1 and is usually written as a - b. We call a - b a change operation if a 7^ A and

h * A; a delete operation if b = A; and an insert operation if a = A.

Let us consider these three kinds of operations.

1. Change: To change one node label to another.

(a-b)

2. Delete: To delete a node.

(AH children of the deleted node b become
children of the parent a.)

(b - A)

3. Insert: To insert a node.

(A consecutive sequence of siblings among the

children of a become the children of b.)

(.\ - b)

Let S be a sequence Sj s^ of edit operations. An S-derivation from A to B is a sequence of

trees Aq, • A^ such that A= Aq, B= A^, and A.-i - A, via s, for 1 < i < k.

Let -y be an cost function which assigns to each edit operation a - b a nonnegative real number
"y(a - b). This cost can be different for different nodes, so it can be used to give greater weights to,

for example, the higher nodes in a tree than to lower nodes.

We constrain ^ to be a distance metric. That is,

i) 7(a - a) =0;

ii) -y(a - b) = -y (b - a); and

iii) (a - c) < ^(a - b) - -y(b - c).

i=k
We extend y to the sequence S by letting -y(S) = ^^(Sj). Formally the distance between Tj

1=1
and T; is defined as:

5 (Ti,T2) = min {yiS) |
S is an edit operation sequence taking Ti to T^}- The definition of -y

makes this a distance metric also.

The edit operations give rise to a mapping. Intuitively, a mapping is a description of how a

sequence of edit operations transform T; into T;, ignoring the order in which edit operations are

applied.

LItracomputer Note 122 Page

Consider the following diagram of a mapping:

T-

f

A dotted line from Ti[i] to T;[j] indicates that T:[i) should be changed to T;[j] if Ti[i]^

T2[j], or that Ti[i] remains unchanged if T;[il = T2[j]. The nodes of Ti not touched by a dotted line

are to be deleted and the nodes of T; not touched are to be inserted. The mapping shows a way to

transform Ti to T2

Formally we define a triple (M.Ti.T;) to be a mapping from T; to T;, where M is any set of

pair of integers (i,j) satisfying:'

(1) l<is\;, 1<;<N;:
(2) For any pair of (i; ,ji) and (i; .12) in M,

(a) ii = i2 iff ii=J2
(b) Ti[ii] IS to the leftof T:[i2] iff T2LU] '^ to the left of T2Li;]

(c) Ti[ii] is an ancestor of Ti[i2] iff T2U1] '^ ^n ancestor of T2U2]

We will use M instead of (M.Ti,T2) if there is no confusion. Let M be a mapping from Ti to

T2- Let I and J be the sets of nodes in T] and T2. respectively, not touched by any line in M. Then

we can define the cost of .\I:

7(M)= X 7(TUij-T2Li])- 27^TUi:-A)- 27(A-Ti[j])
(i,))-cM iH)-;j

Mappings can be composed. Let M^ be a mapping from Ti to T2 and let M2 be a mapping

from Tt to T3. Define

Mio\f2 = {(i,j)|3 k s.t. (i,k) € M: and (k.j) € Nh}

Lemma 1:

(1) MicM- is a mapping

(2) -yCMioNh) s 7(Mi) - ^(M:)

Proof:

(1). is clear from the definition of mapping.

(2). Let Ml be the mapping from Ti to T2 and I; and Jj be the corresponding deletion and inser-

tion sets. Let M2 be the mapping from T2 to T3 and I2 and Jj ^^ '^^ corresponding deletion and

insertion sets. Let MiO\l2 be the composed mapping from Ti to T3 and let I and J be the

corresponding deletion and insertion sets.

Three general situations occur, (i.j) € M10M2. i € I, or j € J. In each case this corresponds

to an editing operation y(x ~ y) where x and y may be nodes or may be .\. In all such cases, the

• • Note that our definition of mapping is different from the defininon in [T-"9] W'e believe that our definition is

more natural because it does not depend on any traversal ordering of the tree.

Lltracompuler Note 122 Page 3

triangle inequalirv' on the distance metric y ensures that -yCx - y) s -y{x - z) - •y(z - y). a

The relation ber^^een a mapping and a sequence of edit operation is as follows:

Lemma 2:

Given S, a sequence S;,s^ of edit operations from Ti to T;, there exists a mapping M
from Ti to T2 such that y(M) s ^(S).

Proof:

This can be proved by induction on k. The base case is k= 1. This case is correct, because any

editing operation preserves the ancestor and sibling relationships in the mapping. In general case, let

Si be the sequence Sj, ... ,St^— 1 of edit operation. There exist a mapping Mj such that •y(Mi) s
"y(Si). Let M; be the mapping for n;;. Now from lemma 1, we have following.

7(MiOM2) <'-y(Mi)-7(VI;) < 7(S). n

Hence, 5(Ti,T2) = iiiin{7(M)| .M is a mapping from Ti and T;}

There has been previous work on this problem. Tai [T-79] gave the previous best algorithm for

the problem. [Z-83] is an improvement of [T-79], giving the same sequential time as our algorithm.

Our new algorithm is simpler than [Z-83], gives a better parallel time, and extends to related prob-

lems. The algorithm of Lu [L-79] does not extend to trees of more than a two levels.

lltracomputer Note 122 Page 4

2. A simple new algorithm

This algorithm, unlike [T-79], [L-79]. and [Z-83]. will, in its intermediate steps, consider the

distance between two ordered forests. At first sight one may think that this will complicate the work
for us, but it will in fact make matters easier.

We use a postorder numbering of the nodes in the trees. In the postordering, Ti[l .. i] and

T2[l -. j] will generally be forests as in the following figure. (The edges are those in the subgraph of

the tree induced by the vertices.) Fortunately, the definition of mapping for these induced ordered

forests is the same as for trees.

Tfl ..71

T[4] T[5]

T[7]

T[5]

Notation: Assume that tree T is numbered by post order. l(i) is the number of the leftmost leaf

descendant of the subtree rooted at T[i]. When T[i] is a leaf, l(i)=i. p(i) is the number of the

parent of node T[i]. We define p'-*(i) = i, p*(i) = p(i), p-(i) =p(p^(i)) and so on. Let Lj be the

depth of node i. (We take the depth of the root to be 1.) Let anc(i) = (p'^(i)l s k s L,}.

2.1. .\ first attempt

We first attempt to solve the problem as it is solved for strings. We try to compute D(Ti[l ..

i]'T2[l .. j]), where 1 s i s N; and 1 s
j
< \2. There are three cases:

Case 1. Ti[i] IS not touched by a line in M.
In this case D(T',[1 .. i],T;[l .. j])=' D(Ti[l .. i

- 1],T;[1 .. j])- 7(Ti[i]-.\).

Case 2. T-i[j] is not touched bv a line in M.
In this case D(T'i[1 .. i],T2[l .. j])='d(Ti[1 .. il,T2[l ••

J
- 1])- 7(A-T2[j]).

Case 3. Ti[i] and T2[j] are touched by lines in M.
As we explain later, (i,j) must be in M and any node in the subtree rooted at Ti[i] can only be

touched by a node in the subtree rooted at T2[j].

Hence D(Ti[l .. i],T-[l .. j])
=

D(Ti[1 .. l(i) - 1],T2[1 .. l(j) - ll)-D(Ti[l(i) .. i - l],T2[l(j) .. j
- l])-7(Ti[i]-T2[j]) Recall

that if i > j, then T[i..j] = 0.

Ultracomputer Note 122 Page 5

The following figure shows the situation.

(The solid lines indicate the pairs of structures

whose distances must be calculated.)

Ti[l ..l(i)-l] Ti[l(i)..i] T2[l ..l(j)-l] T2[Uj)-]]

Case 3 expresses the crucial difference between strings and trees. It says that in order to com-

pute the distance between the forests up to Ti[i] and T2[j], we need the distance between the sub-

trees rooted at those nodes. (Failing to recognize this caused Lu's algorithm to come to grief.) Cal-

culating it requires knowing D(Ti[l(i) .. i - l],T2[l(j) •• j
- 1]), which our first attempt did not

compute.

In general, we compute D(T;[ii .. i],T2[Jl •• jD- where

U € {l(p^(i)), l(p'(i)), l(p-(i)), 1} and

Ji € {l(p°(j)). l(pkj)).l(p-(j)), ••^U-

Note here for tree T with N nodes, node 1 is 1(N) -- the leftmost descendant of the root and the

first node visited in the postorder traversal -- which equals l(p (i)), where L, is the depth of node

T[i].

2.2. New Algorithm

We first present three lemmas and then give our new algorithm.

Recall that anc(i)= {p'^(i)| < k < L,}

Lemma 3:

(1) If ii € anc(i), either Ti[l(ii) .. i - 1] is empty or ij € anc(i - 1).

(2) If ii € anc(i), either Ti[l(i;) .. l(i) - 1] is empty or u € anc(l(i) - 1).

(3) If ii € anc(i), either Ti[l(i) .. i - 1] is empty or i € anc(i - 1).

Proof:

(1). Suppose ii (. anc(i). Because of the post-order numbering, p(i - 1) € anc(i). If ii^p(i
- 1), then either ij € anc(i - 1) or ij is in a subtree to the right of p(i - 1). But the second is

impossible since ij and p(i - 1) are both ancestors of i. If ij < p(i - 1), then Ti[l(ii) .. i - 1] is

empty.

(2). Suppose ii € anc(i). If l(ii) = l(i), then Ti[l(ii) .. l(i) - 1] is empty. If l(ii) < l(i), then

il € anc(p(l(i) - 1)). So, ij € anc(l(i) - 1). By the post-ordering and the ancestor assumption,

l(il) > l(i) is impossible.

(3). Suppose il € anc(i). If l(i) = i, Ti[l(i) .. i- 1] is empty. If l(i) < i, then p(i - 1) = i.

So, i € anc(i - 1). By the post-ordering, l(i) > i is impossible. D

Lemma 4 deals with empty trees or forests.

Ultracomputer Note 122 Page 6

Lemma 4:

(i)D(0,0) = O

(ii) D(Ti[l(ii) .. i],0) = D(Ti[l(ii) .. i - l],0)-7(Ti[i]-.\)

(iii) D(0,T:[l(j:) ..]]') = D{0,T:[l(jj .. j
- i])-7(A-T:[j])

where ii € anc(i) and ji € anc(j)

Proof:

(i) requires no edit operation. In (ii) and (iii), the distances correspond to the cost of deleting

or inserting the nodes in Ti[l(ii) .. i] and T2[lGl) • J]) respectively.

Lemma 5 deal with the general situation.

Lemma 5:

D(Ti[l(ii)..i]J2[l(ji) .. j])= mini

D(Ti[l(ii) .. i - ll,T:[iai) •• ll)-^(T:[i]-.V),

D(Ti[l(ii) .. il.T2[l(ji) .. j
- 1])-7(A-T2[j]).

D(Ti[l(ii) .. 1(1) - l],T2[l(ji) • Uj) - ll)-D(Ti[l(i) .. 1 - 1],T2[1(J) j
- l])-7(Ti[i]-T2[Jl) }

where ii € anc(i) and ji € anc(j)

Proof:

Consider a minimum cost mapping M such that -y(M)= D(Ti[l(ii) .. i],T2[l(ji) •• j]). There

are three cases.

Case 1:

T;[i] is not touched by a line in M. In this case

D(Ti[Uii) .. i],T2[l(ji) J])
=

D(Ti[l(ii)..i- l],T2[iai) • J])-7(Ti[.]-A)

Case 2:

T-'[j] is not touched bv a line in M. In this case

D(Ti[l(ii) ..i],T2[Kji) ..]]) =

D(Ti[l(ii) .. i],T2[i(ji) •• j
- 1])-7(A-T2[j])

Case 3:

Ti[i] and T2[j] are both touched b\ lines in M. Since a mapping must preserve ancestor and

sibling relationships, they must touch each other, i.e. (i,j) € M. For the same reason, any node in

the subtree rooted at Ti[i] can only be touched by a node in the subtree rooted at T2[j] and vice

versa. Hence we have

D(Ti[l(ii) ..i],T2[iai) •]]) =

D(Ti[l(ii) .. l(i) - l],T2[l(ji) .. l(j) - l])-D(Ti[l(.) .. i - l],T2[l(j) .. j
- l]) + 7(Ti[i]-T2[j])

D(Ti[l(ii) .. i],T2[l(ji) •• j]) is just the minimum of the above three values.

We are now ready to to give our new algorithm.

Ultracomputer Note 122 Page 7

Algorithm Basic Distance

begin

D(0,0)=O

for i:= 1 to N'l

for ii i anc(i)

D(Ti[I(ii)..i].0)=D(Ti[l(ii)..i - l],0)->(Ti[i]-A)

for j:= 1 to N2
for ji € anc(j)

D(0.T;[l(ji)..j]) = D(0.T2[l(ji)..j - 1])-^(A-T2[j])

for i:= 1 to N'l

for j:= 1 to N;
for ij € anc(i)

for ii € anc(j) begin

D(Ti[l(i:) .. i],f:[l(ji) .. j])= min{

D(Ti[l(ii) .. i - l],T2[lCi:) il)->(T;[il-A),

D(Ti[liii) .. i].T2[l(ji) •]
- 1|)-7{A-T2[]1).

D(T;[l(i!) .. l(ij - l].T2[l(ji) .. l(j) - l]j-Dai[l(i) .. i - ll,T:[l(j) • j
" 1])- 7(Ti[i]-T2[j]) }

end;

end

Theorem 1: Algorithm Basic Distance correctly computes tree distance.

Proof:

From lemma 3 we know that all the distance terms used in the right hand side of the equations

have been computed previously. From lemma 4 and lemma 5, we know that the formulas used in

above algorithm is correct, n

Lltracomputer Note 122 Page 8

3. Some aspects of our algorithm

3.1. Complexity

Let us coi5sider the time and space complexity of our algorithm.

Bv definition of Lj, |anc(i)j = L,. Therefore the time and space complexity is at most
i=N;' J=N;

0(2 Li* 2 Lj). If we substitute for L, X Lj its maximum Lj x L2 , we obtain the following.

1=1 j=l

The time and space complexity is 0(N; x X2 x Li x Lt)- This is an improvement over the

0(Ni X N- X Li" X L;-) complexity of [T-79].

3.2. From trees to strings

The analysis in previous section is pessimistic. For special trees such as strings, the depth terms

disappear altogether, as can be seen by observing the following. If we define lanc(i) = {l(ij)| i^ €

anc(i)}, then we can rewrite the algorithm as follows:

for 1:= 1 to N;
for j:= 1 to Nt
for 1- € lanc(i)

for ji € lanc(j) beem
D(T;[li .. 1J.T2U: .il)=^rnin{

D(Ti[ii ..i- l].T:[ji .. j])-7(Ti[.]-,\),

D(Ti[ii ..i],T2[jl J
- 11)->(A-T2[]1).

D(Ti[ii .. l(i) - ll.T.Lii • Uj) - l])-D(Ti[l(i) .. 1 - 1],T2[1(J) •• J
- l])-7(Ti[i]-T2[j]) }

end;

So, the complexity should be

i=Ni)=N:

0(2 |lanc(i)| x ^ llancij) 1).

1=1 j=i

So, if the parent of node i has only i as a child, then lanc(i) = Ianc(p(i)). It is not the actual depth of

i that matters, therefore, but its "collapsed depth", i.e. the number distinct leftmost descendants of

nodes on the path from i to the root.

In the important extreme case of a string, every node has one child, so every node has collapsed

depth of 1. Since |lanc(i)|= 1, time and space complexity of 0(Ni x NN)-

This is a nice property. This means that our algorithm is not only a generalization of the string

algorithm to trees but also that when the input is really a string the complexity is the same as that of

the best available algorithm for the general problem of string distance. The algorithms in [T-79] and

[Z-83] do not have this property.

3.3. Parallel Implementation

A transformation of our algorithm to a parallel one has time complexity 0(Ni-N2) while [T-

79] and [Z-83] have time complexity 0((N; -Nt) < (Li-L2))- Our algorithm uses 0(min(Ni,N2)
X Li X L2) processors. Our strategy is to compute, in parallel, all distances D(Ti[l(ii)..i],

L'ltracomputer Note 122 Page 9

T2[l{ji)--j]) for which i -
j
= k.

We now present the parallel algorithm. (When the PARBEGIN - PAREND construct sur-

rounds one or more for loops, it means that every setting of the iterators in the enclosed for loops

can be executed m parallel. The semantics are those of the sequential program ignoring this con-

struct.)

Algorithm Parallel Distance

begin

D(0,0) = O

for i:= 1 to N'l

PARBEGIN
for i- i anc(i)

D(T:[l(ii)..i],0) = D{Ti[l(i:)..i - l],2!)- 7(Ti[i]-.\)

PAREND

for j:= 1 to N2
parbegin"
for J- £ anc(j)

D(0.T;[l(.U)..j]) = D(0,T:[l(ji)..j - l])->(.\-T;[j])

PAREND

for k:= 2 to N; -X2
PARBEGIN
for 1 := ma.x(l,k -Ni) to min(k - l,N-i) do begin

j:= k -1,

for i; € anc(i)

for ii € anc(j) do

D(Ti[l(ii) .. il.T:[l(ji) ..]])= mm(
D(Ti[l(i:) .. i

- l].T:[iai) .. j])'7(T:[i]-A),

D(Ti[l(ii) .. i].T2[l(ji) •• J
- 1])->(A-T2[j]).

D(Ti[l(i:) .. l(i) - l],T;[Kji) .. Kj) - 1])- D(Ti[l(i) .. i - 1],T2[1(J) ••
J
- l])->(Ti[i]-T2[j]) }

end

PAREND
end

Theorem 2; Parallel Distance Algorithm is correct and has time complexity 0(Ni-N2)-

Proof:

The first two initializations are the same as in the Basic Distance algorithm. Let us consider the

general case. For i and j within PARBEGIN and PAREND, i-j=k. We now show that all the

terms used in the min expressions have been previously computed (so there are no interdependencies

among the terms calculated for a given value of k). In the first term i-l-j=k-l<k. In the

second term i-j - l=k - 1 < k. In the third term l(i) - l-l(j) -l£i-l-j-l=k-2<k.
In the fourth termi- 1-j- l = k-2<k.

Since no sequential loop is executed more than Nj - N2 times, the Parallel Distance algorithm

has time complexity 0(Ni-.\2). o

LItracomputer Note 122 Page 10

4. k-distance problem

Here we show how to solve a specialization of tree distance in better time.

Given two trees Ti and T: and a number k. we would like to know if the distance 8(Ti,T2) is

less than k or not and in case it is less than k to give the actual value of 6(Ti,T2)- For simplicity, we
assume that the cost for insert and delete is 1. (An easy generalization to arbitrary costs for insertion

and deletion is to take the minimum insert or delete cost c and then replace k by k/c everywhere,

including in the complexity measures.)

Though we can use our general tree distance algorithm to solve the above problem, we have a

more efficient method. Our algorithm has time complexity 0(k x min(Ni,N2) x Li x L2) or

0(k" X min(Ni..\2) ^ min(Li,L2). Note that if k is small, this is a big improvement over the

Basic Distance Algorithm.

As always, we take our inspiration from strings. The following algorithm is a simple 0(k x

min(Ni,N2)) algorithm for the k-distance problem among strings.

for i:= 1 to X;
for j:= max(i - k,lj to min(i- k.N-) begin

ifTi[i] = T2[j]

then d: =

else d:= 1;

D(i,j)=min(D(i,j - Ij- l,D(i - l,j)- l,D(i - l,j - l)-d }

end;

The idea is that we do not need to compute any D(i,j) such that [i -j|>k. The reason is that for

those D(i,j), D(i,j) s k. Hence such terms will not be useful in any later computation.

The difficulty in the tree case is that even if D(T:[l..i],T2[l..j]) is greater than k,

D(Ti[l(ii)..i].T2[l(ji).-j]) may be smaller than k, where i; € anc(i) and ji i anc(j). Our next

lemma shows that we don't have to worry about such terms.

Lemma 6:

If D(Ti[l..i],T2[l..j])>k, then in any mapping from Ti[l..i'] to T2[l.-j'] such that

D(Ti[l..i"],T2[l.j'])sk, no minimal mapping from Ti[l(ii)..i] to T2[l(jl)-j] *'" ^^ used (i.e. it

will not be a submapping).-

Proof:

By contradiction. If a minima! mapping from T-jL.i'] to T2[l.j'] uses any minimal mapping
from Ti[l(ii)..i] to T2[l(ji)..j], then from the conditions a mapping must follow we know that

Ti[l..l(ii) - 1] must map to T2[l.l(ji) - 1]- Therefore, D(Ti[l..l(ii) - l],T[l..l(ji) - 1])

-D(Ti[l(ii)..i],T-[l(ji)..j]) >D(Ti[l..i],T^[l..j])>k This would imply that

D(Ti[l..i'l,T2[l..j'])>k. n

Now it is easy to see how the algorithm works. We only compute D(Ti[l(ii)..i],T2[l(ji)--j]

when |i -jjsk. In the computation if we need to use D(Ti[l(ii)..i],T2[l(ji)..j] such that |i -j|>k, we
just substitute the value k- 1. So, the general step of the algorithm becomes:

* • This lemma applies to general costs, so we may do better by using it instead of replacing k by k-'c as we proposed
above.

Ultracomputer Note 122 Page 11

for i:= 1 to Ni
for j:= max(i - k,l) to rnin(i* k.N;)

for ii € anc(i)

for ji € anc(j) begin

inner loop computation from Basic Distance Algorithm

The complexity is clearly 0(k x min(Ni,N2) x Li x L2)- But we can do better. For each

Tl[l(ii)-i], there are at most 2k terms from T2[lOl)-i] such that D(Ti[l(i])..i],T2[l(jl)-J] - k.

Therefore we can manage to have an algorithm with complexity 0(k" x min(Ni,N2) ^

min(Li,L2))-

for i:= 1 to N'l

for j:= max(i - k,l) to min(i- k,.\2)

for ii € anc(i)

for ji € anc(j)

such that Id - l(ii)) - (j - l(ji))|s k

inner loop computation from Basic Distance Algorithm

To take advantage of other heuristics, the following lemma :s useful.

Lemma 7:

If D(Ti[l..i].T2[l..j])-D(Ti[i- l..N:],T2[j- l..N2])>k, then in computing D(Ti,T2)^k
D(Ti[l(ii)..i],T:[l(ji)..j] will not be useful, a

In general, to use the lemma 6 one must compute 2k diagonals whereas using lemma 7 only k

diagonals are needed. Another way to use this lemma is to estimate D[Ti[l..i],T2[l-j] and

D[Ti[i- l-Ni],T2[]- 1-N2] using less expensive heuristics such as string matching or label counting

and then to disregard unhelpful intermediate mappings.

The parallel time for this algorithm is the same as for the Basic Distance algorithm but only 0(k
X Li X L2) are needed.

Lltracomputer Note 12: Page 12

5. Distance algorithm as a general technique

Many problems in strings can be solved with dynamic programming. Similarly, our algorithm

not only applies to tree distance but also provides a way to do dynamic programming for a variety of

tree problems.

Here is the general pattern (assuming a postorder traversal):

empty_initialization

for i:= 1 to N'l

for ii € anc(i)

left_initialization

for j:= 1 to Nt
for J2 € anc(j) begin

right_initialization

for i:= 1 to \|
for j:= 1 to N;
for ij € anc(i)

for ji € anc(j) begin

general_term_computation

In the next rwo sections, we give four examples of apparently more complex problems that can

be solved by the same technique and in the same (serial and parallel) time and space complexity as

the Basic Distance algorithm.

Ultracomputer Note 122 Page 13

6. Removals at a vertex

6.1. Single Remove subtrees from one tree

In this section, we consider the calculation of the minimum distance between two trees with a

subtree removed from one of them.

T'

T[

>

1] T,]/V^^^
T[7]

T[9]

T[1J T[2]

T[4] T[5]

Remove subtree rooted at T[8]

The problem is as follows: Given trees T; and T;, we want to know what is the minimum dis-

tance between Ti with a subtree removed and T;.

Let DRl(Ti[l(ii) .. i].T;[l(j;) .. j]) denote the minimum distance between Ti[l(ii) .. i] and

T2[l(jl) • Jl ^"'^h that one subtree is removed from Ti[l(ii) .. i]. The following initialization and

general term computation steps will give us an algorithm. Note D() is the distance in the sense of the

Basic Distance Algorithm.

Ultracomputer Note 122 Page 14

Algorithm Single Subtree Removal

empty_initialization:

DR1(0,0) = ==

leftjnitialization:

DRl(Ti[l(ii)..i].0) = min{

D(Ti[l(ii)..l(i) - 1].0),

DRl(Ti[l(ii) .. i - l],0)-7(Ti[i]-An

right_initialization:

DRi('0,T:[l(ji)..]])=x

general_term_computation

DRUTi[l(ii) .. il.T^flCli) •]])= rnmj

D(Ti[l(i:) ..1(1) - l].T2[Kii) .. j]).

DRKTuKiiJ .. 1 - l],T;[l(ji) .. j])- 7(Ti[i]-A).

DRl(Ti[l{ii) .. i],T:[l(ji) ..
J
- ll)-7(A-T2[j]).

DRUTi[l(ii) .. l(i)-l].T:[l(iO .. l(j)-l])-D(T:[l(i) .. i-l],T:[l(j) .. j- l])->(Ti[i]-T2[j]),

D(Ti[l(ii) .. l(i)-l],T2[l(ji) • !(j)-l))-DRUT;[l(i) .. i-l],T:[l(j) .. j- ll)*7(Ti[i]-T;[j]) }

Lemma 8: Single Subtree Removal algorithm is correct.

Proof:

First the empt\'_initialization and right_initiali2a!ion are correct because no subtree can be

removed from an empty tree.

For the left_initialization there are two cases. Either subtree Ti[l(i) .. i] should be removed, in

which case DRl(Ti[l(ii) .. i].0) = D(Ti[l(ii)..l(i) - 1],0); or a subtree in Ti[l(ii) .. i - 1] should

be removed, in which case DRl(Ti[l(i;)..i],0) = DRUTi[l(ii) .. i - 1],0)- -yCTifiJ-A)}

Hence the left_initialization is correct.

Now let us consider the general_term_computation.

Case (1): subtree T:[l(i) .. i] Ts removed. So, DRl(Ti[l(ii) .. i].T^[l(ji) .. j])
=

D(Ti[l(ii) .. l(i) - l],T;[l(ji) .. j])

Case (2): subtree Ti[Ui) .. i] is not removed. Consider the best mapping between Ti[l(ii) .. i] and

T:[UJi) .. j] with one subtree removed from T;[l(ii) .. i].

There are three subcases.

subcase 1: i is not in the mapping. In this case,

DRl(Ti[l(ii) ..i],T2[I(ji) •]]) =

DRl(Ti[l(ii) .. i - l],T2[iai) • J])-7(Ti[i] - >A),

subcase 2: j is not in the mapping. In this case,

DRl(Ti[l(ii) ..i],T2[iai) ••]]) =

DRl(Ti[l(ii) .. i],T2[iai) • j
- 1])-7(A-T;[j]),

subcase 3: i and j are both in the mapping.

In this case there are two different situation.

3a; subtree is from Ti[l(ii) .. l(i) - I]. In this case,

DRHTi[l(ii)..i],T2[iai) ••]]) =

Lltracomputer Note 122 Page IS

DRl(Ti[l(ii) .. l(i)-l],T;[l(ji) • l(j)-ll)-D(Ti[I(i) .. i-ll-TzlKj) • J- 1])- >(Ti[i]-T2[j])

3b: subtree is removed from T[[l(i) .. i
- 1]. In this case,

DRl(Ti[l(ii) ..i],T2[lOl) }]) =

D(Ti[l(ii) .. l(i)-l],T2[l(ji) l(j)-l])-DRl(T:[l(i) .. i-l]J2[l(j) .. j- ll)->(Ti[il-T2[j]) }.

6.2. Prune subtrees from one tree

In this section, we consider a similar problem, the calculation of the minimum distance between

two trees with a pruning at a node of one of the trees. By pruning at T[i]. we mean removing of all

the proper descendants of T[i] but keeping T[ij itself. (Thus, a pruning never eliminates the entire

tree.)

T'

T[4] T[5]

T[8]

Pruning at T[8] -- remove all its proper descendants

Formally: Given trees Tj and Tt, we want to know what is the minimum distance between Ti
that has been pruned at some node and T2.

A naive application of our distance algorithm would require 0(Xi x the time to run the tree

distance algorithm). We now give a algorithm to do it directly.

We need the following (slightly counterintuitive) definition. A pruning for Ti[l(ii) .. i] can

mean
i) there is a pruning at one node in Ti[l(ii) .. i]; or

ii) there is a pruning at p(i), but this is onlv allowed if all the proper descendants of p(i) are in

Ti[l(ii)..i].

We denote the condition by the predicate arewithin(i,\i). This holds if and only if l(ii)^l(p(i))

and i is the rightmost child of p(i).

Let DPl(Ti[l(ii) .. i],T2[l(ji) • j]) denote the minimum distance between Ti[l(ii) .. i] and

T2[l(jl) •• Jl s"<^^ tb^t there is a pruning for Ti[l(ii) .. i].

The following initialization and general term computation steps will give us an algorithm.

Again, D() is the distance in the sense of the Basic Distance algorithm

LItracomputer Note ill Page 16

Algorithm Single Prune

empty_initialization:

DPl('0,0) = =c

leftjnitialization:

DPl(Ti[l(ii)..i],0) =

DPl(Ti[I(ii) ..i - l],0)-^(T;[i]-.\)

if arewithin{i,ii) then

DPl(Ti[l(ii)..i],0) = min{

DPl(Ti[l(ii)..i],0).

D(T:[l(i;)..l(p(i)) - 1],0)}

right_initialization:

DPl(0,T:[ia:)..Jl) = -

general_term_computation

DPl(Ti[l(i:) ..i].T:[i(jr) .. j])= min{

DPl(Ti[l(ii) .. 1 - l],T2[l(j:) .. j])->(Ti[i]-A).

DPl(Ti[l(ii) .. il,T2[l(j:) •• j
- ll)-^fA-T:[j]).

DPl(Ti[l(ii) .. l(.)-l],T:[!(ji) .. lf]l-l])-D(Ti[l(i) .. i-l],T;[l(j) .. j- ll)-7(T:[i]-T2[j]),

D(Ti[l(ii) ..l(i)-l],T:[l(j:) .. l(j)- i])-DPi(T:[l(i) .. i-il,T:[l(]j .. j- il)-7(Ti[i]-T2[j]) }

if arewithin(i,ii) then

DPl(Ti[l(ii) .. i],T;[iai) • j])= min{

DPl(Ti[l(i:) ..i].T2[l(ji) ..]]).

D(Ti[l(ii) .. l(p(i)) - l],T2[l(jl) ••:])}

Lemma 9: Algorithm Single Prune is correct.

Proof:

First the emptv_initialization and right_initialization are correct because no pruning can occur

on an empty tree.

For the left_initialization there are two cases. If all descendants of p(i) are in Ti[l(ii) .. i], we
can prune at p(i). That means we remove Ti[l(p(i)) .. i]. In this case DPl(Ti[l(ii) ..

i],0) = D(Ti[l(ii) .. l(p(i)) - 1],0). Otherwise, we can prune for Ti[l(i;) .. i - 1], giving cost

DPl(Ti[Uii)..i],0)=DRl(Ti[l(ii) .. i - l],0)-g(Ti[i]-A)}.

Hence the left_initialization is correct.

Now let us consider the general_term_computation.

Lltracomputer Note 122 Page 17

First there are two cases:

Case (1): Ti[l(p(i)) .. i] is removed. So,

DPl(Ti[l(ii) .. il,T2[lOi) ••]]) =

D(Ti[l(ii) .. l(p(i)) - l],T2[l(j;) •• il)

Note: this case is conditional, depending on if all the descendants

of p(i) are in Ti[l(ii) .. i), i.e. arewithin(i,!i).

Case (2): Ti[l(p(i)) .. i] is not removed.

Consider the best mapping between T;[l(ii) .. i] and T2[I(ji) • j]

with a pruning at a node in Ti[l(ii j .. i].

There are three subcases.

subcase 1: i is not in the mapping. In this case,

DPl(Ti[l(ii) ..i],T:[l(ji) .. j])
=

DPl(Ti[l(ii) .. I - l],T;[l(j:) .- j])-v(Ti[il-,V),

subcase 2: j is not in the mapping. In this case,

DPl(Ti[Ki.) ..i],T2[l(ji) ..]]) =

DPl(Ti[l(li) .. i],T2[l(ji) •• j
- Il)-7(A-T;[j]).

subcase 3: i and j are both in the mapping.

In this case there are two different situations.

3a: There is a pruning for Ti[l(ii) .. l(i) - 1]. In this case,

DPl(Ti[lCii) ..i],T2[l(jl)]]) =

DPl(Ti[l(ii) .. l(i)-ll,T2[lCii) •• l(j)-ll)-D(Ti[l(i) .. i-l].T2[l(j) .. j-l])-7(Ti[i]-T2[j])

3b: There is a pruning for Ti [l(i) .. i - 1]. In this case,

DPl(T,[l(ii) .il,T2[l(jl) ••*]]) =

D(Ti[l(ii) ..l(i)-I],T2[Uji) .. l(j)-l])-DPl(Ti[l(i) .. i-l].T;[l(j) .. j-l])->(Ti[i]-T2[j])

L'ltracomputer .Note 122 Page 18

7. Approximate tree matching

We consider here approximate tree matching. Hoffman and 0"Donnell [HO-82] have proposed

an algorithm for exact tree matching. To generalize the problem, we first consider approximate

matching [S-80, U-83, U-85, LV-86] for strings. The problem is to compute, for each i, the

minimum number of editing operations berween the "pattern" string PAT[1..|PAT| | and the "text

string" TEXT[l..i] with a prefix removed (from TEXT). (Intuitively, the algorithm finds the

"occurrence" in TEXT that most closely matches PAT.)

To study this problem to trees, we must generalize the notion of prefix. For us, a prefix will

mean a collection of subtrees. These subtrees can be arbitrary or can arise as a result of zero or

more prunings (section 6.2). We consider each generalization in turn.

7.1. Remove any number of subtrees from TEXT tree

The problem is as follows: Given trees T] and T:, we want to know what is the minimum dis-

tance between Tj with zero or more subtrees removed and T;.

Let DR(T;[l(i;) .. i],T;[l(i:) .. j)) denote the minimum distance between Ti[l(ii) .. i] and

T2[I(ji) •• j] with zero or more subtrees removed from Ti[l(ii) .. i|.

Algorithm Many Subtree Removal

empty_initiaIization:

DR(0,0) = O

left_initialization:

DR(Ti[l(ii)..i],0) = O

right_initialization:

DR(0,T;[l(ji)..j]) = DR(Z,T;[lGi)..j - 1])-^(A-T:[j])

general_term_computation

DR(Ti[l(ii) .. i],T2[l(ji) .. jl)= min{

DR(T-[l(i;) ..1(1) - l],T2[l(ji) .. j]),

DR(Ti[l(,i) .. 1 - l],T2[l(ji) .. j])-7(Ti[i]-.V),

DR(T.[l(i,) .. i],T2[l(J:) .. j
- 1])-7(A-T;[j]).

DR(Ti[l(ii) .. l(.)-l],T2[iai) •• l(j)-l])-DR(Ti[l(i) .. i-l],T2[l(j) -. j- l])-^(Ti[i]-T2[j]) }

Lemma 10: Algorithm Many Subtree Removal is correct.

Proof: 1

First we show that the initialization is correct. The empty-initialization and the

right_initialization is the same as in the tree distance algorithm. The left-initialization

DR(Ti[l(ii)..i],0)= is correct, because we can remove all of Ti[l(ii)..i].

For the general term DR(Ti[l(ii) .. i].T2[lGi) • j]), we ask first whether the subtree Ti[l(i) ..

i] is removed or not. If it is removed, then the distance should be DR(Ti[l(ii) .. l(i) - ll,T2[l(jl) ••

j]) giving the first term of the minimization. Otherwise, consider the mapping between Ti[l(ii) .. i]

and T2[l(ji) .. j] after we perform an optimal removal of subtrees of Ti[l(ii) .. i]. To compute this

L'ltracomputer Note 122 Page 19

mapping, we have the same three cases as in the tree distance algorithm. Hence the general term

should be the minimum of above four terms.

7.2. Prune at any number of nodes from the TEXT tree

Given trees Tj and T;, we want to know what is the minimum distance berween Ti and Tt

when there have been zero or more prunings at nodes of T;

.

Let DP(Ti[l(ii) .. i].T2[lQ!) .. j]) denote the minimum distance between Ti[l(ii) .. i] and

Tif'Ol) •• Jl *'t^ ^^^° °^ more prunings for Ti[l(ii) .. i]. (Refer to section 6.2 for the definition of

"pruning for".) The following initialization and general term computation steps will give us an algo-

rithm to solve our problem.

Algorithm .Many Prunings

empty_initialization:

DP(0.i2;) = O

leftjnitialization:

DP(Ti[l(ii)..i],0) =

DP(Ti[l(ii)..i - l],0)-7(Ti[i]-.\)

if arewithin(i.i;) then

DP(Ti[l(ii)..ij.0) =

DP(Ti[l(ii)..l(p(i)) - 1],0)

right_initialization:

DP(0,T:[i(ji)..Jl) = DP(0,T:[l(j;l..j - l])->(.\-T;[jl)

general_term_com potation

DP(Ti[l(i,) .. i],T:[l(ji) .. j1)= mini

DP(Ti[l(ii) .. i - l],T:[iai) .. Jl)-7(Ti[il-.\),

DP(Ti[l(ii) .. i],T:[l(ji) .. j
- l])-7(.\-T2[j)).

DP(Ti[l(ii) .. l(i)-l].T2[l(ji) •• l(])-l])-DP(Ti[l(i) .. i-l],T;[l(j) .. j-l])-7(Ti[i]-T2[j]) }

if arewithin(i,ii) then

DP(Ti[l(ii) .. i],T:[l(ji) .. jl)= mini

DP(Ti[l(ii) .. il,T:[l(ji) .. Jl),

DP(Ti[l(i:) ..l(p(i)) - l],T2[l(Ji) •• j])}

Lemma 11: Algorithm Many Prunings is correct.

Proof:

First we show that the initialization is correct. The empty-initialization and the

right_initialization is the same as in the tree distance algorithm. For left-initialization, if we can

remove Ti[l(p(i)) .. i] (prune at p(i)) then DP(Ti[l(ii)..i],0) = DP(Ti[l(ii)..l(p(i)) - 1],0). Other-

wise DP(Ti[l(ii)..i],0) = DP(Ti[l(ii)..i - l],0)-7(Ti[i]-A). Hence the leftjnitialization is

correct.

For the general term DP(Ti[l(i!) .. i],T2[l(ji) j]). we ask first whether Ti[l(p(i)) .. i) is

removed or not. If it is removed, then the distance should be DP(Ti[l(ii) .. l(p(i)) - l].T2[l(ji) •.

Jl) giving the first term of the minimization. Otherwise, consider the mapping between Ti[l(ii) .. i)

and T2[l(ji) • j] after we perform an optimal number of prunings for Ti[l(ii) .. i]. Now we have

Lltracomputer Note 122 Pag« 20

the same three cases as in the tree distance algorithm. Hence the general term should be the

minimum of above four terms, o

Let us now condiser the problem of approximate tree matching. In above algorithm, let Tj be

TEXT and T; be PAT and set all cost be 1. We have now a algorithm for approximate tree match-

ing. The result is in D(TEXT[l(i) .. i],PAT[l .. N;]), where Is i < Nj. Note ihat if i is not only

child of its parent, we need to check if D(i2,PAT[l ..N-]) is smaller than D(TEXT[l(i) .. il,PAT[l ..

8. Conclusion

We present a simple dynamic programming algorithm for tree distance which

1. has better time and space complexity than any in the literature;

2. is efficiently parallelizable;

3. can be specialized to the k-distance problem for trees with much improved efficiency; and

4. is generalizable to approximate tree matching problems.

Our research suggests two broad avenues for further algorithmic work. First, we would like to

generalize these algorithms to unordered trees. Second, we would like to consider distance metrics

other than editing distance

-Acknowledgement

We would like to thank Bob Hummel for helpful discussions.

Lltracomputer Note 122 Page 21

References

HO-82.
C. M. Hoffmann and M. J. O'Donnell, "Pattern matching in trees," J.

ACM 29, No. 1 pp. 68-95 (1982).

L-79.

S. Y. Lu, "A tree-to-tree distance and its application to cluster analysis,"

IEEE Trans, on PAMl PAMI-1, No. 2 pp. 219-224 (1979).

LV-86.

G. M. Landau and U. Vishkin, "Introducing efficient parallelism into

approximate string matching and a new serial algorithm," Proc. I8th ACM
Syposium on Theory of Computing, pp. 220-230 (1986).

S-80.

P.H. Sellers, "The theory and computation of evolutionary distances," J.

of Algorithm 1 pp. 359-373 (1980).

T-79.

Kuo-Chung Tai, "The tree-to-tree correction problem." J. ACM 26 pp.

422-433 (1979).

U-83.

E. Ukkonen, "On appro.ximate string matching," Proc. Int. Conf Found.

Comp. Theor , Lecture notes in Computer Science 158 pp. 487-495

Springer-Verlag, (1983).

U-85.

E. Ukkonen, "Finding approximate pattern in strings," J. of Algorithms

6 pp. 132-137 (1985).

WF-74.

R. Wagner and M. Fisher, "The strmg-to-string correction problem," J.

ACM 21 pp. 168-178 (1974).

Z-83.

Kaizhong Zhang, An algorithm for computing similarity of trees, Technical

Report, Mathematics Department Peking University 1983.

NYU COMPSCI TR-310 cl
Zhang, Kaizhong
On the editing distance
between trees and related

problems

NYU COMPSCI TR-310 c.l
Zhang, Kaizhong
On the editing distance
between trees and related
problems

This book mey be kept

IA!^8ai^S^EN DAYS

A fine wiU be charged for each day the book is kept overtime.

