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PREFACE

HE first edition of this book, which was the first English
Diophantus, appeared in 1885, and has long been out of

print. Inquiries made for it at different times suggested to me
that it was a pity that a treatise so unique and in many respects
so attractive as the Awithmetica should once more have become
practically inaccessible to the English reader. At the same time
I could not but recognise that, after twenty-five years in which so
much has been done for the history of mathematics, the book
needed to be brought up to date. Some matters which in 1885
were still subject of controversy, such as the date of Diophantus,
may be regarded as settled, and some points which then had to
be laboured can now be dismissed more briefly. Practically the
whole of the Introduction, except the chapters on the editions of
Diophantus, his' methods of solution, and the porisms and other
assumptions found in his work, has been entirely rewritten and
much shortened, while the chapters on the methods and on the
porisms etc., have been made fuller than before. The new text of
Tannery (Teubner 1893, 1895) has enabled a number of obscure
passages, particularly in Books V and VI, to be cleared up and,
as a basis for a reproduction of the whole work, is much superior to
the text of Bachet. I have taken the opportunity to make my
version of the actual treatise somewhat fuller and somewhat closer
to the language of the original. In other respects also I thought
I could improve upon a youthful work which was my first essay in
the history of Greek mathematics. When writing it I was solely
concerned to make Diophantus himself known to mathematicians,
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vi PREFACE

and I did not pay sufficient attention to Fermat's notes on the
various problems. It is well known that it is in these notes that
many of the great propositions discovered by Fermat in the
theory of numbers are enshrined; but, although the notes are
literally translated in Wertheim’s edition, they do not seem to
have appeared in English; moreover they need to be supple-
mented by passages from the correspondence of Fermat and from
the Doctrinae analyticae Inventum Novum of Jacques de Billy.
The histories of mathematics furnish only a very inadequate
description of Fermat’s work, and it seemed desirable to attempt
to give as full an account of his theorems and problems in
or connected with Diophantine analysis as it is possible to
compile from the scattered material available in Tannery and
Henry’s edition of the Oenvres de Fermat (1891—1896). So much
of this material as could not be conveniently given in the notes
to particular problems of Diophantus I have put together in
the Supplement, which is thus intended to supply a missing
chapter in the history of mathematics. Lastly, in order to make
the book more complete, I thought it right to add some of the
more remarkable solutions of difficult Diophantine problems given
by Euler, for whom such problems had a great fascination ; the last
section of the Supplement is therefore devoted to these solutions.

IS ABENE T

October, 1910.
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INTRODUCTION

CHAPTER 1
DIOPHANTUS AND HIS WORKS

THE divergences between writers on Diophantus used to begin,
as Cossali said?, with the last syllable of his name. There is now,
however, no longer any doubt that the name was Diophantos, not
Diophantes®,

The question of his date is more difficult. Abtlfaraj, the
Arabian historian, in his History of the Dynasties, places Diophantus
under the Emperor Julian (A.D. 361-3), but without giving any
authority ; and it may be that the statement is due simply to a
confusion of our Diophgn,t,usTiﬂ'\ a rhetorician of that name,
mentioned in another article of Suidas, who lived in the time of
Julian®. On the other hand, Rafael Bombelli in his Algebra,

Y Cossali, Origine, trasporto in Italia, primi progressi in essa dedl® Algebra (Parma,
1797-9), 1. p. 61: “*Su la desinenza del nome comincia la diversita tra gli scrittori.”

2 Greek authority is overwhelmingly in favour of Diophantss. The following is the
evidence, which is collected in the second volume of Tannery's edition of Diophantus
(henceforward to be quoted as *“Dioph.,” “Dioph. 1. p. 36 indicating page 36 of
Vol. 11, while “ Dioph. 11. 20” will mean proposition 20 of Book I1.): Suidas s.v.
“Txaria (Dioph. 11 p. 36), Theon of Alexandria, on Ptolemy’s Synfaris Book I. c. g
(Dioph. 11. p. 35), Anthology, Epigram on Diophantus (Ep. X1v. 126; Dioph. 11. p. 60),
Anonymi prolegomena in Introductionem arithmeticam Nicomachi (Dioph. 11. p. 73),
Georgii Pachymerae paraphrasis (Dioph. IL p. 123), Scholia of Maximus Planudes
(Dioph. 11. pp. 148, 177, 178 etc.), Scholium on Iamblichus Zn Nicomacki arithm. introd.,
ed. Pistelli, p. 127 (Dioph. 1I. p. 72), a Scholium on Dioph. i1 8 from the MS. ‘4
(Dioph. 11. p. 260), which is otherwise amusing (H yvx1 oov, Abparre, el perd 700
Zarard &rexa tis SvoxoNias 7o Te ANNwr gov OewpnudTwy xal &) xai Tob Tapbrres Oewph-
patos, *“ Your soul to perdition, Diophantus, for the difficulty of your problems in general
and of this one in particular ) ; John of Jerusalem (rothc.) alone ( Vita Joannis Damas-
ceni XI.: Dioph. 11. p. 36), if the reading of the MS. Parisinus 13539 is right, wrote, in
the plural, &s vfaybpa: 7 Aibparrar, where however Awbparras is clearly a mistake for
Aibparror.

3 Audwios, goguarhs Arrioxeds, Taw éxl ‘lovhavol Toi Bacéws xpdvww, xal®uéxp
Ocodogiov Tob wpeaPurépov - Pacyariov xatpbs, pabnris Awpdrrov.

H. D. I



2 INTRODUCTION

published in 1572, says dogmatically that Diophantus lived under
Antoninus Pius (138-161 A.D.), but there is no confirmation of this
date either.

The positive evidence on the subject can be given very shortly.
An upper limit is indicated by the fact that Diophantus, in his
book on Polygonal Numbers, quotes from Hypsicles a definition
of such a number!. Hypsicles was also the writer of the sup-
plement to Euclid’s Book XIIIL on the Regular Solids known as
Book x1V. of the Elements; hence Diophantus must have written
later than, say, 150 B.C. A lower limit is furnished by the fact that
Diophantus is quoted by Theon of Alexandria®; hence Diophantus
wrote before, say, 350 A.D. There is a wide interval between
150 B.C. and 350 A.D., but fortunately the limits can be brought
closer. We have a letter of Psellus (11th c.) in which Diophantus
and Anatolius are mentioned as writers on the Egyptian method
of reckoning. “Diophantus,” says Psellus?, “dealt with it more
accurately, but the very learned Anatolius collected the most
essential parts of the“doctrine as stated by Diophantus in a
different way (reading érépws) and in the most succinct form,
dedicating (wpoceddrnae) his work to Diophantus” It would
appear, therefore, that Diophantus and Anatolius were contem-
poraries, and it is most likely that the former would be to the
latter in the relation of master to pupil.. Now Anatolius wrote
about 278-9 A.D., and was Bishop of Laodicea about 280 A.D. We
may therefore safely say that Diophantus flourished about 250 A.D.
or not much later. This agrees well with the fact that he is not
quoted by Nicomachus (about 100 A.D.), Theon of Smyrna (about
130 A.D.) or lamblichus (end of 3rd c.).

! Dioph. I. p. 470-2.

? Theo Alexandrinus in primum librum Ptolemaei Mathematicae Compositionis (on c.
1X.) : see Dioph. II. p. 35, kad' & xal Awbpavrés ¢nae® Tis yap povddos dueTadérov odons
kal éoTdons wdvrote, TO wOAawhaciaibuevor eldos éx’ aldriy atrd To €ldos EoTar k.T.é.

3 Dioph. I1. p. 38-9: wepl 8¢ 7is alyvwriaxfis pueBddov TavTns Abpavros uév Suéhafer
dxpiBéaTepov, & 8¢ hoyidraros Avatbhios 7d cuvekTikdrara pépn Tiis kar' éxelvov émoTiuns
dwohebduevos érépw (2 érépws or éralpy) Awpdrry swontikdrara wpocepdwnoe. The MSS.
read érépw, which is apparently a mistake for érépws or possibly for éralpw. Tannery con-
jectures 7¢ éralpy, but this is very doubtful ; if the article had been there, Awogpdrre 79
éralpy would have been better. On the basis of éralpy Tannery builds the further
hypothesis that the Dionysius to whom the A7#tkmetica is dedicated is none other than
Dionysius who was at the head of the Catechist school at Alexandria 232-247 and was
Bishop there 248-265 A.D. Tannery conjectures then that Diophantus was a Christian
and a pupil of Dionysius (Tannery, *‘Sur la religion des derniers mathématiciens de
Pantiquité,” Extrait des Annales de Philosophie Chrétienne, 1896, p. 13 sqq.). It is
however difficult to establish this (Hultsch, art. * Diophantos aus Alexandreia” in Pauly-
Wissowa’s Real- Encyclopidic der classischen Altertumswissenchaften).
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The only personal particulars about Diophantus which are
known are those contained in the epigram-problem relating to him
in the Anthology®. The solution gives 84 as the age at which he
died. His boyhood lasted 14 years, his beard grew at 21, he
married at 33; a son was born to him five years later and died, at
the age of 42, when his father was 80 years old. Diophantus’ own
death followed four years later? It is clear that the epigram was
written, not long after his death, by an intimate personal friend
with knowledge of and taste for the science which Diophantus
made his life-work?.

The works on which the fame of Diophantus rests are :

(1) The Arithmetica (originally in thirteen Books).
(2) A tract On Polygonal Numbers.
Six Books of the former and part of the latter survive,
Allusions in the Arithmetica imply the existence of
(3) A collection of propositions under the title of Porisms;
in three propositions (3, 5 and 16) of Book V. Diophantus quotes
as known certain propositions in the Theory of Numbers, prefixing
to the statement of them the words “ We have it in the Porisms
that...... ” (éxopev év Tois Ioplopaciy 8ri k.7.6.).

A scholium on a passage of Iamblichus where he quotes a
dictum of certain Pythagoreans about the unit being the dividing
line (uefdpiov) between number and aliquot parts, says “thus
Diophantus in the Moriastica‘......for he describes as ‘parts’ the
progression without limit in the direction of less than the unit.”
Tannery thinks the MopiacTicd may be ancient scholia (now
lost) on Diophantus I. Def. 3 sqq.%; but in that case why should
Digphantus be supposed to be speaking? And, as Hultsch

1 Anthology, Ep. x1v. 126; Dioph. II. pp. 60-1.

2 The epigram actually says that his boyhood lasted } of his life; his beard grew
after 7 more; after } more he married, and his son was born five years later; the son
lived to half his father’s age, and the father died four years after his son. Cantor (Gesc.
d. Matk. 13, p. 465) quotes a suggestion of Heinrich Weber that a better solution is
obtained if we assume that the son died at the time when his father’s age was double his,
not at an age equal to half the age at which his father died. In that case
’ ot fax+ix+5+5(x—4)+4=2, or 3xr=196 and x=653.

SThis would substitute 10§ for 14, 16§ for 21, 253 for 33, 30} for 42, 613 for 8o,
d 653 for 84 above. I do not see any advantage in this solution. On the contrary,
¥ think the fractional results are an objection to it, and it is to be observed that the
Hcholiast has the solution 84, derived from the equation

Pt dhrticts+ir+a=a

" 3 Hultsch, art. Diophantos in Pauly-Wissowa’s Real-Encyclopidic.

4 Tamblichus 7 Nicomachi arithm. introd. p. 127 (ed. Pistelli) ; Dioph. 11. p. 72.

, 5 Dioph. 11. p. 72 note.

=12



4 INTRODUCTION

remarks, such scholia would more naturally have been quoted
as oxdha and not by the separate title Mopiagmical. It may
have been a separate work by Diophantus giving rules for reckon-
ing with fractions; but I do not feel clear that the reference
may not simply be to the definitions at the beginning of the
Avrithmetica.

With reference to the title of the  Arithnetica, we may observe
that the meaning of the word dptBugrika here is slightly different
from that assigned to it by more ancient writers. The ancients
drew a marked distinction between dpifuyrics; and NoyioTiwd,
though both were concerned with numbers. Thus Plato states
that dpifuntier} is concerned with the abstract properties of
numbers (as odd and even, etc.), whereas Aoyworin} deals with the
same odd and even, but in relation to one another?. Geminus also
distinguishes the two terms® According to him dpfunrics deals
with numbers ¢z themselves, distinguishing linear, plane and solid
numbers, in fact all the forms of number, starting from- the unit,
and dealing with the generation of plane numbers, similar and
dissimilar, and then with numbers of three dimensions, etc.
AoytoTier) on the other hand deals, not with the abstract properties
of numbers in themselves, but with numbers of concrete things
(aicOnTdv, sensible objects), whence it calls them by the names of
the things measured, eg. it calls some by the names un\rys and
¢draritys®. But in Diophantus the calculations take an abstract
form (except in V. 30, where the question is to find the number
of measures of wine at two given prices respectively), so that the
distinction between NoyioTik) and dpfuntiey is lost.

We find the {Irz't/tmetz'm quoted under slightly different titles.
Thus the Em\?n%y‘mous author of prolegomena to Nicomachus’
Introductio Arithmetica speaks of Diophantus’ “ thirteen Books of
Arithmetic®” A scholium on Iamblichus refers to “the last
theorem of the first Book of Diophantus’ Elements of Arithmetic

1 Hultsch, /oc. cit.

2 Gorgias, 451 B, C: & pév &N\a xaBdwep i) dpufunTich 1) AoyioTiks Egees mepl 70 abrd
ydp éoti, 76 Te dpriov kal TO wepirTéye diapéper ¢ Tooobrov, 8Te Kkal wpds alrd kal wpds
EA\Nha wds Exe ThHfovs émiakomel 7O wepirTov Kal T dpTiov f NoyioTik,

3 Proclus, Comment. on Euclid 1., p. 39, 14-40, 7.

4 Cf. Plato, Laws 819 B, C, on the advantage of combining amusement with instruction
in arithmetical calculation, e.g. by distributing apples or garlands (wjdev 7¢ Twww
Stavopal kal orepdvwr) and the use of different bowls of silver, gold, or brass etc. (gidhas
dpa xpboov kal yahkoi xal dpylpov xal Towbrwy Twdv EN\wv kepavwivres, ol 6¢ Shas wws
Siadidbvres, 8mep elmwov, els madid évapubrrovres Tas TV dvaykalwy dpfudv xpices).

5 Dioph. II. p. 73, 26.
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(dpebunTiris aroryetboews).” A scholium on one of the epigrams
in Metrodorus’ collection similarly speaks of the “ Elements of
Diophantus®”

None of the MSS. which we possess contain more than the
first six Books of the Arithmetica, the only variation being that
some few divide the six Books-into seven?, while one or two give
the fragment on Polygonal Numbers with the number viir, The
idea that Regiomontanus saw, or said he saw, a MS. containing
the thirteen Books complete is due to a misapprehension. There
is no doubt that the missing Books were lost at a very early date.
Tannery* suggests that Hypatia’s commentary extended only to
the first six Books, and that she left untouched the remaining
seven, which accordingly were first forgotten and then lost; he
compares the case of Apollonius’ Conics, the first four Books of
which were preserved by Eutocius, who wrote a commentary on
them, while the rest, which he did not include in his commentary,
were lost so far as the Greek text is concerned. While, however,
three of the last four Books of the Conics have fortunately reached
us through the Arabic, there is no sign that even the Arabians
ever possessed the missing Books of Diophantus. Thus the
second part of an algebraic treatise called the Fakkzi by Abu
Bekr Muh. b. al-Hasan al-Karkhi (d. about 1029) is a collection of
problems in determinate and indeterminate analysis which not
only show that their author had deeply studied Diophantus, but in
many cases are taken direct frqm the Arithmetica, with the change,
occasionally, of some of the Constants In the fourth section of
this work, which begins and ends with problems corresponding to
problems in Diophantus Books II. and IIL respectively, are 25
problems not found in Diophantus; but the differences from
Diophantus in essential features (e£. several of the problems lead
to equations giving irrational results, which are always avoided
by Diophantus), as well as other ‘internal evidence, exclude the
hypothesis that we have here a lost Book of Diophantus®. Nor is
there any sign that more of the work than we possess was known

1 Dioph. 11. p. 72, 17 ; Iamblichus (ed. Pistelli), p. 132, 12.

2 Dioph. 11. p. 62, 25.

3 ¢.g. Vaticanus gr. 200, Scorialensis 2-1-15, and the Broscius MS. in the University
Library of Cracow ; the two last divide the first Book into two, the second beginning
immediately after the explanation of the sign for minus (Dioph. I. p. 14, 1).

4 Dioph. 11. p. xvii, xviii.

5 See ¥. Woepcke, £xtrait du Fakhri, traité &’ Algebre par Abou Bekr Mokammed

ben Alhacan Alkarkhi (manuscrit 952, :u/)[:l!menl arabe de la bibliotheque Impériale), Paris,
1853.
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to Abi’l Wafi al-Biizjani (940-998 A.D.), who wrote a “commentary
* (tafsir) on the algebra of Diophantus” as well as a “Book of
proofs of the propositions used by Diophantus in his work...”
These facts again point to the conclusion that the lost Books were
lost before the 10th c.

Tannery’s suggestion that Hypatia’s commentary was limited
to the six Books, and the parallel of Eutocius’ commentary on
Apollonius’ Conics, imply that it is the /Jasz seven Books, and the
most difficult, which'are-lost. This view is in strong contrast to
that which had previously found most acceptance among com-
petent authorities. The latter view was most clearly put, and
most ably supported, by Nesselmann?, though Colebrooke? had
already put forward a conjecture to the same effect ; and historians
of mathematics such as Hankel, Moritz Cantor, and Giinther have
accepted Nesselmann’s conclusions, which, stated in his own
words, are as follows: (1) that much less of Diophantus is wanting
than would naturally be supposed on the basis of the numerical
proportion of 6 to 13; (2) that the missing portion is not to be
looked for at the end but in the middle of the work, and indeed
mostly between the first and second Books. Nesselmann’s general
argument is that, if we carefully read the last four Books, from:the
third to the sixth, we find that Diophantus moves in a rigidly
defined and limited circle of methods and artifices, and that any
attempts which he makes to free himself are futile; “as often as
he gives the impression that he wishes to spring over the magic
circle drawn round him, he is invariably thrown back by an
invisible hand on the old domain already known ; we see, similarly,
in half-darkness, behind the clever artifices which he seeks to use
in order to free himself, the chains which fetter his genius, we hear
their rattling, whenever, in dealing with difficulties only too freely
imposed upon himself, he knows of no-other means of extricating
himself except to cut through the knot instead of untying it.”
Moreover, the sixth Book forms a natural conclusion to the whole,
in that it consists of exemplifications of methods explained and
used in the preceding Books. The subject is the finding of right-
angled triangles in rational numbers such that the sides and area
satisfy given conditions, the geometrical property of the right-angled
triangle being introduced as a fresh condition additional to the
purely arithmetical conditions which have to be satisfied in the

Y Algebra der Griechen, pp. 164—273.
2 Algebra of the Hindus, Note M, p. Ixi.



DIOPHANTUS AND HIS WORKS 7

problems of the earlier Books. But, assuming that Diophantus’
resources are at an end in the sixth Book, Nesselmann has to
suggest possible topics which would have formed approximately
adequate material for the equivalent of seven Books of the
Aprithmetica. The first step is to consider what is actually wanting
which we should expect to find, either. as foreshadowed by the
author himself or as necessary for the elucidation or completion of
the whole subject. Now the first Book contains problems leading
to determinate equations of the first degree; the remainder of the
work is a collection of problems which, with few exceptions, lead
to indeterminate equations of the second degree, beginning with
simpler cases and advancing step by step to more complicated
questions. There would have been room therefore for problems
involving (1) determinate equations of the second degree and (2)
indeterminate equations of the firsz. There is indeed nothing to
show that (2) formed part of the writer’s plan; but on the other
hand the writer's own words in Def. 11 at the beginning of the
work promise a discussion of the solution of the complete or
adfected quadratic, and it is clear that he employed his method of
solution in the later Books, where in some cases he simply states
the solution without working it out, while in others, where the
roots are “irrational,” he gives approximations which indicate
that he was in possession of a scientific method. Pure quadratics
Diophantus regarded as simple equations, taking no account of the
negative -root. Indeed it would seem that he adopted as his
ground for the classification of quadratics, not the index of the
highest power of the unknown quantity contained in it, but the
number of terms left in it when reduced to its simplest form. His
words are!: “If the same powers of the unknown occur on both
sides, but with different coefficients (u7 ouomAn8y &), we must
take like from like until we have one single expression equal to
another. If there are on both sides, or on either side, any terms
with negative coefficients (év éAhel\reat Tiva €i8n), the defects must
be added on both sides until the terms on both sides have
none but positive coefficients (érvmapyorra), when we must again
take like from like until there remains one term on each side.
This should be the object aimed at in framing the hypotheses of
propositions, that is to say, to reduce the equations, if possible,
until one term is left equated to one term. But afterwards I will

! Dioph. 1. Def. 11, p. 14.
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show you also how, when two terms are left equal to one term,
such an equation is solved.” That is to say, reduce the quadratic,
if possible, to one of the forms ax’=bx, ax’=c, or bxr=c; I will
show later how to solve the equation when three terms are left of
which any two are equal to the third, Ze.-the complete quadratic
ax*+ bx ¥ c=0, excluding the case a2+ bx +c=o0. The. exclusion
of the latter case is natural, since it is of the éssence of the work
to find rational and positive solutions. Nesselmann might have
added that Diophantus’ requirement that the equation, as finally
stated, shall contain only positive terms, of which two are equated
to the third, suggests that his solution would deal separately with
the three possible cases (just as Euclid makes separate cases of the
equations in his propositions VI. 28, 29), so that the exposition
might occupy some little space. The suitable place for it would
be between the first and second Books. There is no evidence
tending to confirm Nesselmann’s further argument that the six
Books may originally have been divided into even more than
seven Books. He argues from the fact that there are often better
natural divisions in the middle of the Books (eg: at 1I. 19) than
between them as they now stand; thus there is no sign of a
marked division between Books I. and II and between Books II.
and 111, the first five problems of Book II and the first four of
Book 111 recalling similar problems in the preceding Books
respectively. But the latter circumstances are better explained,
as Tannery explains them, by the supposition that the first
problems of Books II. and IiI are interpolated from some ancient
commentary. Next Nesselmann points out that there are a
number of imperfections in the text, Book V. especially having
been “treated by Mother Time in a very stepmotherly fashion ”;
thus it seems probable that at v. 19 three problems have dropped
out altogether. Still he is far from accounting for seven whole
Books; he has therefore to press into the service the lost
“Porisms” and the tract on Polygonal Numbers.

If the phrase which, as we have said, occurs three times in
Book V., “We have it in the Porisms that...,” indicates that the
“Porisms” were a definite collection of propositions concerning
the properties of certain numbers, their divisibility into a certain
number of squares, and so on, it is possible that it was from the
same collection that Diophantus took the numerous other pro-
positions which he assumes, ecither explicitly enunciating them, or
implicitly taking them for granted. May we not then, says
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Nesselmann, reasonably suppose the “Porisms” to have formed
an introduction to the indeterminate and semi-determinate analy-
sis of the second degree which forms the main subject of the
Avithmetica, and to have been an integral part of the thirteen
Books, intervening, probably, between Books I. and II.? Schulz, on
the other hand, considered this improbable, and in recent years
Hultsch! has definitely rejected the theory that Diophantus filled
one or more Books of his Arithmetica exclusively with Porisms.
Schulz’s argument is, indeed, not conclusive. It is based on the
consideration that “ Diophantus expressly says that his work deals
with arithmetical problems®”; but what Diophantus actually says is
“ Knowing you, O Dionysius, to be anxious to learn the solution
(or, nerhaps, ‘discovery,” eDpeaw) of problems in numbers, I have
endeivoured, beginning from the foundations on which the study is
built. 5up, to expound (YmosTijcar =to lay down) the nature and
force SL":Slstmg in numbers,” the last of which words would easlly
cover pnposxtlons in the theory of numbers, while  propositions,”
‘ot _Rﬂems,” is the word used at the end of the Preface, where
Ee‘s'ays, “let us now proceed to the propositions (wpordaets) ......
which have been treated in thirteen Books.”

_On reconsideration of the whole matter, I now agree in the
view of Hultsch that the Porisms were not a separate portion of
the A#rithmetica or included in the Arithmetica at all. If they had
been, I think the expression “ we have it in the Porisms” would
have: been inappropriate. In the first place, the Greek mathe-
maticians do not usually give references in such a form as this
to propositions which they cite when they come from the same
work as that in which they are cited ; as a rule the propositions
are quoted without any references at all. The references in this
case would, on the assumption that the Porisms were a portion of
the thirteen Books, more naturally have been to particular pro-
positions of particular Books (cf. Eucl. XII 2, “ For it was proved

1 Hultsch, loc. cit.

2 The whole passage of Schulz is as follows (pref. xxi): ** Es ist daher nicht unwahr-
scheinlich, dass diese Porismen eine eigene Schrift unseres Diophantus waren, welche
vorziiglich die Zusammensetzung der Zahlen aus gewissen Bestandtheilen zu ihrem
Gegenstande hatten. Konnte man diese Schrift als. einen Bestandtheil des grossen in
dreizehn Biichern abgefassten arithmetischen Werkes ansehen, so wire es sehr erklirbar,
dass gerade dieser Theil, der den blossen Liebhaber weniger anzog, verloren ging. Da
indess Diophantus ausdriicklich sagt, sein Werk behandele aréthmetische Probleme, so hat
wenigstens die letztere Annahme nur einen geringen Grad von Wahrscheinlichkeit.”
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in the first theorem of the 10th Book that...”). But a still vaguer
reference would have been enough, even if Diophantus had chosen
to give any at all ; if the propositions quoted had preceded those
in which they are used, some expression like 7obTo «ydp rpo-
yéyparmrar, “for this has already been proved,” or 8édeicrar yap
TovTo, “ for this has been shown,” would have sufficed, or, if the
propositions occurred later, some expression like s é€fjs Sevyfnaerar
or Sevyfnoerar O Hudv JaTepov, “as will be proved in due course
or “later.” The expression “we have it in the Porisms” (in the
plural) would have been still more inappropriate if the “Porisms”
had been, as Tannery supposes?, not collected together as one or
more Books of the Arithmetica, but scattered about in the work as
corollaries to particular propositions?. And, as Hultsch says, it is
hard, on Tannery’s supposition, to explain why the three
theorems quoted from ¢the Porisms” were lost, wh
number of other additions survived, partly under the tit
(cf. 1. 34, 1. 38), partly as “lemmas to what follows,” A
éijs (cf. lemmas before 1V. 34, 35, 36, V. 7, 8, VL 12, I
other hand, there.is nothing improbable in the suppo;
Diophantus was induced by the difficulty of his problé
place in a separate work to the “porisms” necessa
solution. .
The hypothesis that the Porisms formed part of th
ica being thus given up, we can hardly hold an
Nesselmann’s view of the contents of the lost Boo the
place in the treatise; and I am now much more inclined to the
opinion of Tannery that it is the last and the most difficult Books
which are lost. Tannery’s argument seems to me to be very
attractive and to deserve quotation in full, as.finally put in the
preface to Vol. 1I. of his Diophantus®. He-«replies first to the
assumption that Diophantus could not have proceeded to problems
more difficult than those of Book v. “ But if the fifth or the sixth
Book of the Arithmetica had been lost, who, pray, among us would
have believed that such problems had ever been attempted by the
Greeks? It would be the greatest error, in any case in which a

1 Dioph. 11, p. xix.

2 Thus Tannery holds (oc. ¢72.) that the solution of the complete quadratic was given
in the form of corollaries to I. 27, 30; and he refers the three ‘‘porisms” quoted in V. 3,
5, 16 respectively to a second (lost) solution of 111. 10, to IIL. 15, and to 1v. 1, 2.

3 Dioph. 11. p. xx.
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thing cannot clearly be proved to have been unknown to all the
dncients, to maintain that it could not have been known to some
Greek mathematician. If we do not know to what lengths
Archimedes brought the theory of numbers (to say nothing of
other things), let us admit our ignorance. But, between the
famous problem of the cattle and the most difficult of Diophantus’
problems, is there not a sufficient gap to require seven Books to-
fill it? And, without attributing to the ancients what modern
mathematicians have discovered, may not a number of the things
attributed to the Indians and Arabs have been drawn from
Greek sources? May not the same be said of a problem solved by
Leonardo of Pisa, which is very similar to those of Diophantus but
is nc now to be found in the Arithmetica? In fact, it may fairly
be said that, when Chasles made his reasonably probable restitution
of the Porisms of Euclid, he,ynotwithstanding the fact that he had
Pappus’ lemmas to help him, undertook-a more difficult task than
he would have undertaken if he had attempted to fill up seven
Diophantine Books with numerical problems which the Greeks
may reasonably be supposed to have solved.” p

On the assuinption that the lost portion came at the end of the
existing six Books, Schulz supposed that it contained new methods
of solution in addition to those used in Books I to VI, and in
particular extended the method of solution by means of the double
equation (Svmhf} ladTns or SumhoicdTys). By means of the double
equation Diophantus shows how to find a value of the unknown
which will make two expressions (linear or quadratic) containing it
simultaneously squares. Schulz then thinks that he went on, in
the lost Books, to make #kree such expressions simultaneously
squares, Z¢. advanced to a #riple equation. But this explanation
does not in any case take us very far.

Bombelli thought that Diophantus went on to solve deter-
minate equations of the third and fourth degree!; this view,
however, though natural at that date, when the solution of cubic
and biquadratic equations filled so large a space in contemporary
investigations ‘and in Bombelli's own studies, has nothing to
support it.

Hultsch? seems to find the key to the question in the fragment
of the treatise on Polygonal Numbers and the developments to

1 Cossali, I. pp. 75, 76. 2 Hultsch, oc. cit.
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which it might have been expected to lead. In this he differs
from Tannery, who says that, as Serenus’ treatise on the sections
of cones and cylinders was added to the mutilated Conics of
Apollonius consisting of four Books only, in order to make up a
convenient volume, so the tract on Polygonal Numbers was added
to the remains of the Azithmetica, though forming no part of the
larger work!. Thus Tannery would seem to deny the genuineness
of the whole tract on Polygonal Numbers, though in his text he
only signalises the portion beginning with the enunciation of the
problem “ Given a number, to find in how many ways it can be
a polygonal number” as a “vain attempt by a commentator” to
solve this problem. Hultsch, on the other hand, thinks we may
conclude that Diophantus really solved the problem. He points
out moreover that the beginning of the tract is like the beginning
of Book I of the Arithmetica in containing definitions and pre-
liminary propositions. Then came the difficult problem quoted,
the discussion of which breaks off in our text after a few pages;
and to this it would be easy to tack on a great variety of other
problems. Again, says Hultsch, the supplementary propositions
added by Bachet may serve to give an approximate idea of the
difficulty of the problems which were probably treated in Books VII.
and the following. And between these and the bold combination
of a triangular and a square number in the Cattle-Problem
stretches, as Tannery says, a wide domain which was certainly
not unknown to Diophantus, but was his hunting-ground for the
most various problems. Whether Diophantus dealt with plane
numbers, and with other figured numbers, such as prisms and
tetrahedra, is uncertain.

The name of Diophantus was used, as were the names of Euclid,
Archimedes and Heron in their turn, for the purpose of palming
off the compilations of much later authors. Tannery prints in
his edition three fragments under the head of “Diophantus
Pseudepigraphus.” The first?, which is not “from the Arithmetic
of Diophantus ” as its heading states, is worth notice as containing
some particulars of one of “two methods of finding the square
root of any square number ”’; we are told to begin by writing the
number “according to the arrangement of the Indian method,” Ze.
according to the Indian numerical notation which reached us
through the Arabs. The fragment is taken from a Paris MS.

! Dioph. 11, p. xviii. 2 Dioph. 1. p. 3, 3-14.
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(Supplem. gr. 387), where it follows a work with the title *Apys
Tiis peydAns xal ‘Ivdiriis Yrndidoplas (ie. Yyrndodopias), written in
1252 and raided about half a century later by Maximus Planudes.
The second ‘fragment? is the work edited by C. Henry in 1879 as
Opusculum de multiplicatione et divisione sexagesimalibus Diophanto
vel Pappo attribuendum. The third? beginning with Avopdvrov
émumedopetpuka, is a compilation made in the Byzantine period out
of late reproductions of the yewpueTpodueva and arepeoperpoipeva
of Heron. The second and third fragments, like the first, have
nothing to do with Diophantus.

! Dioph. 1L p. 3, 15-15, 17. 2 Dioph. 1L p. 15, 18-31, 22.



CHAPTER 11

THE MSS. OF AND WRITERS ON DIOPHANTUS

For full details of the various MSS. and of their mutual
relations, reference should be made to the prefaces to the first and
second volumes of Tannery’s edition’. Tannery’s account needs
only to be supplemented by a description given by Gollob? of
another MS. supposed by Tannery to be non-existent, but actually
rediscovered in the Library of the University of Cracow (Nr 544).
Only the shortest possible summary of the essential facts will be
given here.

After the loss of Egypt the work of Diophantus long remained
almost unknown among the Byzantines; perhaps one copy only
survived (of the Hypatian recension), which was seen by Michael
Psellus and possibly by the scholiast to Iamblichus, but of which
no trace can be found after the capture of Constantinople in 1204.
From this one copy (denoted by the letter 2 in Tannery’s table of
the MSS.) another MS. (a) was copied in the 8th or gth century ;
this again is lost, but is the true archetype of our MSS. The
copyist apparently intended to omit all scholia, but, the distinction
between text and scholia being sometimes difficult to draw, he
included a good deal which should have been left out. For
example, Hypatia, and perhaps scholiasts after her, seem to have
added some alternative solutions and a number of new problems ;
some of these latter, such as IL. 1-7, 17, 18, were admitted into the
text as genuine. ‘

The MSS. fall into two main classes, the ante-Planudes class,
as we may call it, and the Planudean. The most ancient and the
best of all is Matritensis 48 (Tannery’s A4), which was written in
the 13th century and belongs to the first class; it is evidently a
most faithful copy of the lost archetype (a). Maximus Planudes
wrote a systematic commentary on Books 1. and 11, and his scholia,

1 Dioph. L. pp. iii-v, II. pp. xxii~xxxiv.

2 Eduard Gollob, *Ein wiedergefund Dioph dex” in Zeitschrift fiir Math.
u. Physik, XLIV. (1899), hist.-litt. Abtheilung, pp. 137-140.
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which are edited by Tannery for the first time, are preserved in the
oldest representative which we possess of the Planudean class,
namely, Marcianus 308 (Tannery’s B,), itself apparently copied
from an archetype of the 14th century now lost, with the exception
of ten leaves which survive in Ambrosianus Et 157 sup.

diagram :
(2) Lost copy of the Hypatian recension.

Tannery shows the relation of the MSS. in the following’

(a) Lost copy, of eighth or ninth c.

(FIRST CLASS)

(PLANUDEAN CLASS)

-

P

Matritensis 48 = 4,
13thc.

Vaticanusgr.191= 7,
second half of 15th c.

Vaticanus  gr.
beginning of l6th c

|

9. Lost MS. of the 14th c. of which ten leaves
} are extant in Ambrosianus Et 157 sup.
o

|

Marcianus 308 = 5,

B

Parisinus 2379=C
(after first two
Books),

middle of 16th c.

Parisinus 2378 =7,
middle of 16th c.

Neapolitanus
III C 17,
middle of 16th c.

Urbinas gr. 74,
end of 16th c.

Oxon. Baroccianus
166 (part of Book I.
only)

beginning of rsth c.
11.  Guelferbytanus 14. Ambrosianus
| Gudianus 1, 15th c. A g1 sup.
(1545)
12. Palatinus gr. 391, 15. Vaticanus gr. 200

end of 16th c. ’ (1545)

13. Reginensis 128, . Scorialensis T-I-11

10.
end of 16th c. (1545)
4. Parisinus 2379=C 17. Parisinus 2485=XK,

| (first two Books) middle of 16th c.

18. Scorialensis

20. Taurinensis C IIT 16 R-I1I-18,

middle of 16th c.

21, Parisinus Ars. 8406
=X 19. Ambrosianus

Q 121 sup. (part of
22. Scorialensis 2-I-15, ook I.),
middle of 6th c. mlddle of 16th c.

23. Scorialensis R~-II-3,
end of 16th c.

24, Oxon. Savilianus,
end of 16th c.

Auria’s recension made up out of MSS 2, 3, 15 above and Xylander’s

translation :

25. Parisinus 2380=
26. Ambrosianus E 5 sup.

27. MS. (Patavinus) of Broscius (Brozek) now at Cracow.
28. Lost MS. of Cardinal du Perron.
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The addition of a few notes as regards the most important and
interesting of the MSS,, in the order of their numbers in Tannery’s
arrangement, will now sufficiently complete the story.

1. The best and most ancient MS,, that of Madrid (Tannery’s
A), was unfortunately spoiled at a late date by corrections made,
especially in the first two Books, from some MS. of the Planudean
class, in such a way that the original reading is sometimes entirely
erased or made quite illegible. In these cases recourse must be
had to the Vatican MS. 191.

2. The MS. Vaticanus graecus 191 was copied from A before
it had suffered the general alteration by means of a MS. of the
other class, though not before various other corrections had been
made in different hands not easily distinguished ; thus V" some-
times has readings which Tannery found to have arisen from some
correction in A. A appears to have been at Rome for a con-
siderable period at the time when ¥ was copied; for the librarian
who wrote the old table of contents? at the beginning of V inserted
in the margin in one place? the word dpEduevos, which had been
omitted, direct from the original (4).

3. Vat. gr. 304 was copied from V, not from 4; Tannery
inferred this mainly from a collation of the scholia, and he notes
that the word dpEapevos above mentioned is here brought into the
text by the erasure of some letters. This MS. 304, being very
clearly written, was used thenceforward to make copies from. The
next five MSS. do not appear to have had any older source.

4. The MS. Parisinus 2379 (Tannery’s ) was that used by
Bachet for his edition. It was written by one Ioannes Hydruntinus
after 1545, and has the peculiarity that the first two Books were
copied from the MS. Vat. gr. 200 (a MS. of the Planudean class),
evidently in order to include the commentary of Planudes, while
the MS. Vat. gr. 304 belonging to the pre-Planudes class was
followed in the remaining Books, no doubt because it was con-
sidered superior. Thus the class of which C is the chief repre-
sentative is a sort of mixed class.

5, 6. Parisinus 2378 =/, and Neapolitanus 111 C 17, were
copied by Angelus Vergetius. In the latter Vergetius puts the

! The MS. V was made up of various MSS. before separated. The old table of
contents has Awgdsrov dpibunrichs dpuovikd didpopa. The dpuovika include the Zntro-
duction to Harmony by Cleonides, but without any author’s name. This fact sufficiently
explains the error of Ramus in saying, Stkole mathematica, Bk 1. p. 35, *Scripserat et
Diophantus harmonica.”

2 Dioph. 1. p. 2, 5-6.
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numbers A, B, I, A, E, Z, H at the top of the pages (as we put
headlines) corresponding to the different Books, implying that he
regarded the tract on Polygonal Numbers as Book VII.

The other MSS. of the first class call for no notice, and we pass
to the Planudean class.

9. Tannery, as he tells us, congratulated himself upon finding
in Ambrosianus Et 157 sup. ten pages of the archetype of the
class, and eagerly sought for new readings. So far, however, as he
was able to carry his collation, he found no difference from the
principal representative of the class (B,) next to be mentioned.

10. The MS. Marcianus 308 (= B,) of the 15th century formerly
belonged to Cardinal Bessarion, and was seen by Regiomontanus
at Venice in 1464. It contains the recension by Planudes with his
commentary.

11. It seems certain that the Wolfenbiittel MS. Guelferbytanus
Gudianus I (15th c) was that which Xylander used for his
translation ; Tannery shows that, if this was not the MS. lent
to Xylander by Andreas Dudicius Sbardellatus, that MS. must
have been lost, and there is no evidence in support of the latter
hypothesis. It is not possible to say whether the Wolfenbiittel
MS. was copied from Marcianus 308 (B;) or from the com-
plete MS. of which Ambrosianus Et 157 sup. preserves the ten
leaves.

12. Palatinus gr. 391 (end of 16th c.) has notes in German in
the margin which show that it was intended to print from it; it
was written either by Xylander himself or for him. It is this MS.
of which Claudius Salmasius (Claude de Saumaise, 1588-1653)
told Bachet that it contained nothing more than the six Books,
with the tract on Polygonal Numbers,

13. Reginensis 128 was copied at the end of the 16th century
from the Wolfenbiittel MS.

14, 15. Ambrosianus A 91 sup. and Vaticanus gr. 200 both
come from B,; as they agree in omitting V. 28 of Diophantus, one
was copied from the other, probably the latter from the former.
They were both copied by the same copyist for Mendoza in 1545.
Vat. gr. 200 has headings which make eight Books ; according to
Tannery the first Book is numbered &', the fourth 8 ; before V. 20
(in Bachet’s numbering)-—should this be Iv. 20?—is the heading
Avopavrov €, before the fifth Book Asegpdavrov s, before the sixth
Avodavrov ¢, and before the tract on Polygonal Numbers
Avoddyrov 5 ; this wrong division occurs in the next three MSS.

H. D. 2
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(16, 17, 18 in the diagram), all of which seem to be copied from
Vat. 200.

The MSS. numbered 20, 21, 22, 23 in the diagram are of the
hybrid class derived from Parisinus 2379 (C). Scorialensis Q-I-15
and Scorialensis R-I11-3, the latter copied from the former, have
the first Book divided into two (cf. p. 5 above), and so make
seven Books of the Arithmetica and an eighth Book of the
Polygonal Numbers.

27. The Cracow MS. has the same division into Books as the
MSS. last mentioned. According to Gollob, the collation of this
MS.,, so far as it was carried in 1899, showed that it agrees in the
main with A4 (the best MS.), B, (Marcianus 308) and C (Parisinus
2379); but, as it contains passages not found in the two latter, it
cannot have been copied from either of them.

25. Parisinus 2380 appears to be the copy of Auria’s
Diophantus mentioned by Schulz as having been in the library of
Carl von Montchall and bearing the title “ Diophanti libri sex, cum
scholiis graecis Maximi Planudae, atque liber de numeris poly-
gonis, collati cum Vaticanis codicibus, et latine versi a Josepho
Aurial”

The first commentator on Diophantus of whom we hear is
Hypatia, the daughter of Theon of Alexandria ; she was murdered
by Christian fanatics in 415 AD. According to Suidas she wrote
commentaries on Diophantus, on the Astronomical Canon (sc. of
Ptolemy) and on the Conics of Apollonius®2 Tannery suggests
that the remarks of Michael Psellus (11th c.) at the beginning of
his letter about Diophantus, Anatolius, and the Egyptian method
of arithmetical reckoning were taken bodily from some MS. of
Diophantus containing an ancient and systematic commentary ;
and he believes this commentary to have been that of Hypatia. I
have already mentioned the attractive hypothesis of Tannery that
Hypatia’s commentary extended only to our six Books, and that
this accounts for the loss of the rest.

Georgius Pachymeres (1240 to about 1310) wrote in Greek a
paraphrase of at least a portion of Diophantus. Sections 25-44 of

1 Schulz, Diophantus, pref. xliii.

2 Suidas s.v. ‘Twarla: Eypager vmbpvnua els Aibpavrov, <els> Tdv doTpovoukdy Kavbva,
els T& kwrikd "AroNwrlov Umbuvnpa. So Tannery reads, following the best MSS.; he
gives ample reasons for rejecting Kuster’s conjecture els Awogdvrov 7év doTpovouxdy kavéva,
viz. (1) that the order of words would have been 7o Awgérrov dorpovopxdv xavéva,
(2) that there is nothing connecting Diophantus with astronomy, while Suidas mentions,
5.v. Oéwv, a commentary els Tdv IlToheuatov wpdxeipor kaviva.
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this survive and are published by Tannery in his edition of
Diophantus®. The chapters lost at the beginning may have con-
tained general observations and introductions to the first two
paragraphs of Book I.; section 25 begins with the third paragraph
(Def. 1),'and the rest of the fragment takes us up to the problem
in L 1L, ]

Soon afterwards Maximus Planudes (about 1260-1310) wrote
a systematic commentary on Books L, 1. This is also included by
Tannery in his edition®

There ‘are a number of other ancient scholia, very few of which
seemed to Tannery to be worth publication®.

But in the meantime, and long before the date of Georgius
Pachymeres, the work of Diophantus had become known in Arabia,
where it was evidently the subject of careful study. We are told
in the Fijrist, the main part of which was written in the year
987 A.D, (1) that Diophantus was a Greek of Alexandria who
wrote a book “On the art of algebra‘” (2) that Abu'l Wafa
al-Bizjani (940-998) wrote (2) a commentary (Zzfsir) on the
algebra of Diophantus and (8) a book of “proofs to the pro-
positions used by Diophantus in his book and to that which
he himself (Ab@’'l Wafi) stated in his commentary®” (3) that
Qusta b. Liiga al-Ba'labakki (died about 912) wrote a “com-
mentary on three and a half Books of Diophantus’ work on
arithmetical problems®” Qusta b. Liiqa, physician, philosopher,
astronomer, mathematician and translator, was the author of works
on Euclid and of an “introduction to geometry ” in the form of
question and answer, and translator of the so-called Books X1v., XV.
of Euclid; other Arabian authorities credit him with an actual
“translation of the book of Diophantus on Algebra”.” Lastly, we
are told by Ibn abi Usaibi‘a of “marginal glosses which Ishaq b.
Yinis (died about 1077), the physician of Cairo, after Ibn al-
Haitham, added to the book of Diophantus on algebraic problems.”
The title is somewhat obscure; probably Ibn al-Haitham (about
965-1039), who wrote several works on Euclid, wrote a commentary
on the Arithmetica and Ishaq b. Yinis added glosses to this
commentary®.

! Dioph. iL. pp. 78-122. 2 Dioph. 11. pp. 125-255.

3 The few that he gives are in Vol. 1f. pp. 256—260; as regards the collection in
general cf. Hultsch in Berliner philologische Wochenschrift, 1896, p. 615.

4 Fikrist, ed. Suter, p. 22. 8 ibid. p. 39. S ibid. p. 43.

7 Suter, Die Mathematiker und A der Araber, 1900, p. 41.

8 Suter, 0p. cit, pp. 107-8. Cf. Bibliotheca Mathematica 1V3, 1903—4, p- 296+

2—2
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To Regiomontanus belongs the credit of being the first to call
attention to the work of Diophantus as being extant in Greek.
We find two notices by him during his sojourn in [taly, whither he
journeyed after the death of his teacher Georg von Peurbach,
which took place on the 8th April, 146i. In connexion with
lectures on the astronomy of Alfraganus which he gave at Padua
he delivered an Oratio introductoria in omnes scientias mathe-
maticas’. In this he observed: “No one has yet translated from
the Greek into Latin the fine thirteen Books of Diophantus, in
which the very flower of the whole of Arithmetic lies hid, the ars
rei et census which to-day they call by the Arabic name of
Algebra%” Secondly, he writes to Bianchini, in answer to a letter,
dated s5th February, 1464, that he has found at Venice “Diofantus,”
a Greek arithmetician, who has not yet been translated into Latin;
that in his preface Diophantus defines the various powers up to
the sixth; but whether he followed out all the combinations of
these Regiomontanus does not know: “for not more than six
Books are found, though in the preface he promises thirteen. If
this book, which is really most wonderful and most difficult, could
be found entire, I should like to translate it into Latin, for the
knowledge of Greek which I have acquired while staying with my
most reverend master [Bessarion] would suffice for this....” He
goes on to ask Bianchini to try to discover a complete copy and,
in the meantime, to advise him whether he should begin to translate
the six Books®. The exact date of the Orafio is not certain.
Regiomontanus made some astronomical observations at Viterbo
in the summer and autumn of 1462. He is said to have spent a
year at Ferrara, and he seems to have gone thence to Venice.
Extant letters of his written at Venice bear dates from 27th July,
1463, to 6th July, 1464, and it may have been from Venice
that he made his visit to Padua. At all events the Oratio at
Padua must have been near in time to the discovery of the
MS. at Venice.

Notwithstanding that attention was thus called to the work, it

I Printed in the work Rudimenta astronomica Alfragani, Niirnberg, 1537.

2 As the ars rei et census, the solution of determinate quadratic equations, is not found
in our Diophantus, it would seem that at the time of the Oratio Regiomontanus had only
looked at the MS. cursorily, if at all.

3 The letter to Bianchini is given on p. 135 of Ch. Th. v. Murr’s Memorabilia,
Norimbergae, 1786, and partly in Doppelmayer’s Historische Nachrickt von den Niirn-
bergischen Mathematicis und Kiinstlern (Niirberg, 1730), p. 5, note y.
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seems to have remained practically a closed book from the date of
Maximus Planudes to about 1570. Luca Paciuolo, towards the
end of the 15th c., Cardano and Tartaglia about the middle of the
16th, make no mention of it. Only Joachim Camerarius, in a
letter published in 15567, mentions that there is a MS. of
Diophantus in the Vatican which he is anxious to see. Rafael
Bombelli was the first to find a MS. in the Vatican and to conceive
the idea of publishing the work. This was towards 1570, for in his
Algebra? published in 1572 Bombelli tells us that he had 7z Zke
years last past discovered a Greek book on Algebra written by “a
certain Diofantes, an Alexandrine Greek author, who lived in the
time of Antoninus Pius”; that, thinking highly of the contents of
the work, he and Antonio Maria Pazzi determined to translate it;
that they actually translated five books out of the seven into
which the MS. was divided ; but that, before the rest was finished,
they were called away from it by other labours. Bombelli did not
carry out his plan of publishing Diophantus in a translation, but
he took all the problems of the first four Books and some of those
of the fifth, and embodied them in his Algebra, interspersing them
with his own problems. He took no pains to distinguish
Diophantus’ problems from his own; but in the case of the former
he adhered pretty closely to the original, so that Bachet admits his
obligations to him, remarking that in many cases he found

Y De Graecis Latinisque numerorum notis et praeterea Savacenis sew Indicis, ete. etc.,
studio Joachimi Camerarii, Papeberg, 1556.

3 Nesselmann tells us that he has not seen this work but takes his information about
it from Cossali. I was fortunate enough to find in the British Museum one of the copies
dated 1579 (really the same as the original edition of 1572 except that the title-page and
date are new, and a dedicatory letter on pp. 3-8 is reprinted; there were not two
separate editions). The title is L'A/gebra, opera di Rafael Bombelli da Bologna divisa in
tre Libri,..... In Bologna, Per Giovanni Rossi, MDLXXIX. The original of the passage
from the preface is :

¢ Questi anni passati, essendosi ritrouato una opera greca di questa disciplina nella
libraria di Nostro Signore in Vaticano, composta da un certo Diofante Alessandrino Antor
Greco, il quale fu 3 tempo di Antonin Pio, e havendomela fatta vedere Messer Antonio
Maria Pazzi Reggiano, publico lettore delle Matematiche in Roma, e giudicatolo con lui
Antore assai intelligente de' numeri (ancorche non tratti de’ numeri irrationali, ma solo
in lui si vede vn perfetto ordine di operare) egli, ed io, per arrichire il mondo di cosl fatta
opera, ci dessimo 2 tradurlo, e cinque libri (delli sette che sono) tradutti ne habbiamo; lo
restante non haunendo potuto finire per gli tranagli auenuti all’ uno, e all’ altro; e in detta
opera habbiamo ritrouato, ch’ egli assai volte cita gli Autori Indiani, col che mi ha fatto
conoscere, che questa disciplina appo.gl’ indiani prima fi, che a gli Arabi.” The last
words stating that Diophantus often quotes from Indian authors are no doubt due to
Bombelli’s taking for part of Diophantus the tract of Maximus Planudes about the Indian
method of reckoning.
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Bombelli’s translation better than Xylander’s and consequently
very useful for the purpose of amending the latter’.

It may be interesting to mention a few points of notation in
this work of Bombelli. At the beginning of Book II. he explains
that he uses the word “tanto” to denote the unknown quantity,
not “cosa” like his predecessors; and his symbol for it is L, the
square of the unknown (#?) is 2, the cube &; and so on. For plus
and minus (pit and meno) he uses the initial letters p and .
Thus corresponding to x+ 6 we should find in Bombelli 11 2. 6,
and for #* + 5x—4, 12 p. 5L m. 4. This notation shows, as will be
seen later, some advance upon that of Diophantus in one important
respect.

The next writer upon Diophantus was Wilhelm Holzmann who
published, under the Graecised form of his name, Xylander, by
which he is generally known, a work bearing the title: Diophanti
Alexandyini Rerum Avithmeticarum Libri sex, quorum primi duo
adiecta habent Scholia Maximi (ut coniectura est) Planudis. Item
Liber de Numeris Polygonis sew Multangulis. Opus incomparabile,
uerae Avithmeticae Logisticae perfectionem continens, paucis adhuc
wisum. A Guil. Xylandro Augustano incredibili labove Latiné
vedditum, et Commentariis explanatum, inque lucem editum, ad
Illustriss. Principem Ludovicum Vuirtembergensem. Basileae per
Eusebium Episcopium, et Nicolai Fr. haeredes. MDLXX V. Xylander
was according to his own statement a “public teacher of Aristotelian
philosophy in the school at Heidelberg®.” He was a man of almost
universal culture?, and was so thoroughly imbued with the classical
literature, that the extraordinary aptness of his quotations and his
wealth of expression give exceptional charm to his writing whenever
he is free from the shackles of mathematical formulae and techni-
calities. The Epistola Nuncupatoria is addressed to the Prince
Ludwig, and Xylander neatly introduces it by the line “ Offerimus
numeros, numeri sunt principe digni.” This preface is very quaint
and interesting. He tells us how he first saw the name of
Diophantus mentioned in Suidas, and then found that mention

1 “Sed suas Diophanteis quaestionibus ita immiscuit, ut has ab illis distinguere non
sit in promptu, neque vero se fidum satis interpretem praebuit, cum passim verba
Diophanti immutet, hisque pleraque addat, pleraque pro arbitrio detrahat. In muitis
nihilominus interpretationem Bombellii, Xilandriana praestare, et ad hanc emendandam
me adjuvisse ingenue fateor.” Ad lectorem.

? ““Publicus philosophiae Aristoteleae in schola Heidelbergensi doctor.”

3 Even Bachet, who, as we shall see, was no favourable critic, calls him * Vir omnibus
disciplinis excultus.”
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had been made of his work by Regiomontanus as being extant
in an Italian library and having been seen by him. But, as the
book had not been edited, he tried to think no more of it but,
instead, to absorb himself in the study of such arithmetical books
as he could obtain, and in investigations of his own’. Self-taught
except in so far as he could learn from published works such as
those of Christoff Rudolff (of the “ Coss ), Michael Stifel, Cardano,
Nuilez, he yet progressed so far as to be able to add to, modify
and improve what he found in those works. As a result he fell
into what Heraclitus called oinaw, fepav vogow, that is, into the
conceit of “being somebody” in the field of Arithmetic and
“Logistic”; others too, themselves learned men, thought him an
arithmetician of exceptional ability. But when he first became
acquainted with the problems of Diophantus (he continues) right
reason brought such a reaction that he might well doubt whether he
ought previously to have regarded himself as an object of pity or of
derision. He considers it therefore worth while to confess publicly his
own ignorance at the same time that he tries to interest others in
the work of Diophantus, which had so opened his eyes. Before this
critical time he was so familiar with methods of dealing with surds
that he had actually ventured to add something to the discoveries
of others relating to them ; the subject of surds was considered to
be of great importance in arithmetical questions, and its difficulty

1 T cannot refrain from quoting the whole of this passage: ‘‘Sed cim ederet nemo :
cepi desiderium hoc paulatim in animo consopire, et eoram quos consequi poteram
Arithmeticorum librorum cognitione, et meditationibus nostris sepelire. Veritatis porro
apud me est autoritas, ut ei coniunctum etiam cum dedecore meo testimonium lubentissime
perhibeam. Quod Cossica seu Algebrica (cum his enim reliqua comparata, id sunt quod
umbrae Homericé in Necya ad animam Tiresiae) ea ergo qudd non assequebar modo,
quanquam mutis duntaxat usus preceptoribus caetera adrodidaxros, sed et augere, uariare,
adeoque corrigere in loco didicissem, quae summi et fidelissimi in docendo uiri Christifer
Rodolphus Silesius, Micaelus Stifelius, Cardanus, Nonius, aliique litteris mandauerant :
incidi in ofyow, lepd» véoov, ut scité appellauit Heraclitus sapientior multis aliis philoso-
phis, hoc est, in Arithmetica, et uera Logistica, putaui me esse aliquid: itaque de me
passim etiam a multis, iisque doctis uiris iudicatum fuit, me non de grege Arithmeticum
esse. Verum ubi primim in Diophantea incidi: ita me recta ratio circumegit, ut flendisne
mihi ipsi anted, an uerd ridendus fuissem, haud iniuria dubitauerim. Operae precium est
hoc loco et meam inscitiam inuulgare, et Diophantei operis, quod mihi nebulosam istam
caliginem ab oculis detersit, immd eos in coenum barbaricam defossos eleuauit et repur-
gauit, gustum aliquem exhibere. Surdorum ego numerorum tractationem ita tenebam,
ut etiam addere aliorum inuentis aliquid non poenitendum auderem, atque id quidem in
rebus arithmeticis magnum habetur, et difficultas istarum rerum multos a mathematibus
deterret. Quanto autem hoc est praeclarius, in iis problematis, quae surdis etiam
numeris uix posse uidentur explicari, rem eo deducere, ut quasi solum arithmeticum
uertere iussi obsurdescant illi plané, et ne mentio quidem eorym in tractatione ingenio-
sissimarum quaestionum admittatur.”
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was even such as to deter many from the study of mathematics.
“But how much more splendid,” says Xylander, “in the case of
problems which seem to be hardly capable of solution even with
the help of surds, to bring the matter to the point that, while the
surds, when bidden (so to speak) to plough the arithmetic soil,
become true to their name and deaf to entreaty, they are not so
much as mentioned in these most ingenious solutions!” He then
describes the enormous difficulties which beset his work owing
to the corruptions in his text. In dealing, however, with the
mistakes and carelessness of copyists he was, as he says, no novice;
for proof of which he appeals to his editions of Plutarch, Stephanus
and Strabo. This passage, which is good reading, but too long
to reproduce here, I give in full in the note’. Next Xylander
tells us how he came to get possession of a manuscript of Dio-
phantus. In October of the year 1571 he made a journey to
Wittenberg ; while there he had conversations on mathematical
subjects with two professors, Sebastian Theodoric and Wolfgang
Schuler by name, who showed him a few pages of a Greek

1 ““1d uerd mihi accidit durum et uix superabile incommodum, qudd mirificé deprauata
omnia inueni, cim neque problematum expositio interdum integra esset, ac passim numeri
(in quibus sita omnia esse in hoc argumento, quis ignorat?) tam problematum quam
solutionum siue explicationum corruptissimi. Non pudebit me ingenué fateri, qualem me
heic gesserim.  Audacter, et summo cum feruore potius quam alacritate animi opus ipsum
initio sum aggressus, laborque mihi omnis uoluptati fuit, tantus est meus rerum arithmeti-
carum amor. quin et gratiam magnam me apud omnes liberalium scientiarum amatores ac
patronos initurum, et praeclare de rep. litteraria meriturum intelligebam, eamque rem
mihi laudi (quam & bonis profectam nemo prudens aspernatur) gloriaéque fortasse etiam
emolumento fore sperabam. Progressus aliquantulum, in salebras incidi: quae tantum
abest ut alacritatem meam retuderint, ut etiam animos mihi addiderint, neque enim mihi
novum aut insolens est aduersus librariorum incuriam certamen, et hac in re militaui, (ut
Horatii nostri uerbis utar) non sine gloria. quod me non arroganter dicere, Dio,
Plutarchus, Strabo, Stephanusque nostri testantur. Sed cum mox in ipsum pelagus
monstris scatens me cursus abripuit : non despondi equidem animum, neque manus dedi,
sed tamen saepius ad oram unde soluissem respexi, qudm portum in quem esset euadendum
cogitando prospicerem, deprachendique non minus ueré quim eleganter ea cecinisse
Alcaeum, quae (si possum) Latiné in hac quasi uotiua mea tabula scribam,

Qui uela uentis uult dare, dum licet,

Cautus futuri praeuideat modum

Cursus. mare ingressus, marino

Nauiget arbitrio necesse est.
Sané quod de Echeneide pisce fertnr, eum nauim cui se adplicet remorari, poené credibile
fecit mihi mea cymba tot mendorum remoris retardata. Expediui tamen me ita, ut facile
omnes mediocri de his rebus iudicio praediti, intellecturi sint incredibilem me laborem et
aerumnas difficilimas superasse : pudore etiam stimulatum oneris quod ultro mihi impos-
uissem, non perferendi. Paucula quaedam non plané explicata, studio et certis de causis
in alium locum reiecimus. Opus quidem ipsum ita absoluimus ut neque eius nos pudere
debeat, et Arithmeticae Logisticesque studiosi nobis se plurimum debere sint haud dubie

s 9

professuri.
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manuscript of Diophantus and informed him that it belonged to
Andreas Dudicius whom Xylander describes as “Andreas Dudicius
Sbardellatus, hoc tempore Imperatoris Romanorum apud Polonos
orator.” On his departure from Wittenberg Xylander wrote out
and took with him the solution of a single problem of Diophantus,
to amuse himself with on his journey. This he showed at Leipzig
to Simon Simonius Lucensis, a professor at that place, who wrote to
Dudicius on his behalf. A few months afterwards Dudicius sent
the MS. to Xylander and encouraged him to persevere in his
undertaking to translate the A»ithmetica into Latin. Accordingly
Xylander insists that the glory of the whole achievement belongs
in no less but rather in a greater degree to Dudicius than to
himself. Finally he commends the work to the favour of Prince
Ludwig, extolling the pursuit of arithmetical and algebraical
science and dwelling in enthusiastic anticipation on the influence
which the Prince’s patronage would have in helping and advancing
the study of Arithmetic’, This Epistola Nuncupatoria bears the
date 14th August, 1574% Xylander died on the 10th of February
in the year following that of the publication, 1576.

Tannery has shown that the MS. used by Xylander was
Guelferbytanus Gudianus I. Bachet observes that he has not been
able to find out whether Xylander ever published the Greek text,
though parts of his commentary seem to imply that he had, or at
least intended to do so. It is now clear that he intended to bring
out the text, but did not carry out his intention. Tannery observes
that the MS. Palatinus gr. 391 seems to have been written either by
Xylander himself or for him, and there are German notes in the
margin showing that it was intended to print from it.

Xylander's achievement has been, as a rule, quite inadequately
appreciated. Very few writers on Diophantus seem to have studied
the book itself: a fact which may be partly accounted for by its
rarity. Even Nesselmann, whose book appeared in 1842, says that
he has never been able to find a copy. Nesselmann however seems
to have come nearest to a proper appreciation of the value of the
work : he says “Xylander’s work remains, in spite of the various

1 ¢« Hoc non modd tibi, Princeps Hlustrissime, honorificum erit, atque gloriosum; sed
te labores nostros approbante, arithmeticae studium ciim alibi, tum in tua Academia et
Gymnasiis, excitabitur, confirmabitur, prouehetur, et ad perfectam eins scientiam multi tuis
auspiciis, nostro labore perducti, magnam hac re tuis in remp. beneficiis accessionem
factam esse gratissima commemoratione praedicabunt.”

2 ¢ Heidelberga. postrid. Eidus Sextiles 10 15 LXXIV.”
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defects which are unavoidable in a first edition of so difficult an
author, especially when based on only one MS. and that full of
errors, a highly meritorious achievement, and does not deserve
the severe strictures which it has sometimes had passed upon it.
It is true that Xylander has in many places not understood his
author, and has misrepresented him in others; his translation is
often rough and un-Latin, this being due to a too conscientious
adherence to the actual wording of the original; but the result
was none the less brilliant on that account. The mathematical
public was put in possession of Diophantus’ work, and the
appearance of the translation had an immediate and enormous
influence on the development and shaping of Algebral” As a
rule, the accounts of Xylander’s work seem to have been based
on what Bachet says about it and about his obligations to it.
When I came to read Bachet myself and saw how disparaging,
as a rule, his remarks upon Xylander were, I could not but suspect
that they were unfair. His repeated and almost violent repudiation
of obligation to Xylander suggested to me the very thing which he
disclaimed, that he was under too great obligation to his predecessor
to acknowledge it duly. I was therefore delighted at my good
fortune in finding in the Library of Trinity College, Cambridge,
a copy of Xylander, and so being able to judge for myself of
the relation of the later to the earlier work. The result was to
confirm entirely what I had suspected as to the unfair attitude
taken up by Bachet towards his predecessor. I found it every-
where; even where it is obvious that Xylander’s mistakes or
difficulties are due only to the hopeless state of his solitary MS.
Bachet seems to make no allowance for the fact. The truth is that
Bachet’s work could not have been as good as it was but for the
pioneer work of Xylander; and it is the great blot in Bachet’s
otherwise excellent edition that he did not see fit to acknowledge
the fact.

I must now pass to Bachet’s work itself. It was the first
edition published which contained the Greek text, and appeared
in 1621 bearing the title: Diophanti Alexandrini Arithmeticorum
libri sex, et de numeris multangulis liber wnus. Nunc primiom
Graecé et Latine editi, atque absolutissimis Commentariis illustrati,
Auctore Claudio Gaspare Bacheto Meziriaco Sebusiano, V.C. Lutetiae
Parisiovum, Sumptibus Hievonymi Drovart®, via Jacobaca, sub Scuto

1 Nesselmann, p, 279—80.
2 For “sumptibus Hieronymi Drovart etc. ” some copies have ‘“ sumptibus Sebastiani
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Solari. MDCXXI. Bachet’s Greek text is based; as he tells us,
upon a MS. which he calls “codex Regius,” now in the Bibliothéque
Nationale at Paris (Parisinus 2379) ; this MS. is his sole authority,
except that Jacobus Sirmondus had part of a Vatican MS. (Vat.
gr. 304) transcribed for him. He professes to have produced a
good Greek text, having spent incalculable labour upon its emenda-
tion, to have inserted in brackets all additions which he made to it,
and to have given notice of all corrections, except those of an
obvious or trifling nature ; a few passages he has left asterisked, in
cases where correction could not be safely ventured upon. He
is careful to tell us what previous works relating to the subject he
had been able to consult. First he mentions Xylander (he spells
the name as Xzlander throughout), who had translated the whole of
Diophantus, and commented upon him throughout, “except that
he scarcely touched a considerable part of the fifth book, the whole
of the sixth and the treatise on multangular numbers, and even
the rest of his work was not very successful, as he himself admits
that he did not thoroughly understand a number of points.”. Then
he speaks of Bombelli (as already mentioned) and of the Zetetica of
Vieta (in which the author treats in his own way a large number
of Diophantus’ problems: Bachet thinks that he so treated them
because he despaired of restoring the book completely). Neither
Bombelli nor Vieta (says Bachet) made any attempt to demonstrate
the difficult porisms and abstruse theorems in numbers which
Diophantus assumes as known in many places, or sufficiently
explained the causes of his operations and artifices. All these
omissions on the part of his predecessors he thinks he has supplied
in his notes to the various problems and in the three books of
“Porisms” which he prefixed to the work®. As regards his Latin
translation, he says that he gives us. Diophantus in Latin from the
version of Xylander most carefully corrected, in which he would
have us know that he has done two things in particular, first,

Cramoisy, via Jacobaea, sub Ciconiis.”” The copy (from the Library of Trinity College,
Cambridge) which I used in preparing my first edition has the former words; a copy in
the Library of the Athenaeum Club has the latter.

1 On the nature of some of Bachet’s proofs Nicholas Saunderson (formerly Lucasian
Professor) remarks in Zlements of Algebra, 1740, apropos of Dioph. 111. 15: ““ M. Bachet
indeed in the 16th and 17th props. of his second book of Porisms has given us demonstra-
tions, such as they are, of the theorems in the problem: but in the first place he
demonstrates but one single case of those theorems, and in the next place the demonstra-
tions he gives are only synthetical, and so abominably perplexed withal, that in each
demonstration he makes use of all the letters in the alphabet except I and O, singly to
represent the quantities he has there occasion for.”
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corrected what was wrong and filled the numerous lacunae,
secondly, explained more clearly what Xylander had given in
obscure or ambiguous language; “I confess however,” he says,
“that this made so much change necessary, that it is almost
fairer to attribute the translation to me than to Xilander. But if
anyone prefers to consider it as his, because I have held fast, tooth
and nail, to his words when they do not misrepresent Diophantus,
1 have no objection’” Such sentences-as these, which are no
rarity in Bachet’s book, are certainly not calculated to increase
our respect for the author. According to Montucla?, “the historian
of the French Academy tells us” that Bachet worked at this edition
during the course of a quartan fever, and that he himself said that,
disheartened as he was by the difficulty of the work, he would never
have completed it, had it not been for the stubbornness which his
malady generated in him.

As the first edition of the Greek text of Diophantus, this work,
in spite of any imperfections we may find in it, does its author all
honour.

The same edition was reprinted and published with the addition
of Fermat’s notes in 1670 : Diophanti Alexandrini Avithmeticorum
libri sex, et de numeris multangulis liber unus. Cum commentariis
C. G. Backeti V.C. et obseruationibus D. P. de Fermat Senatoris
Tolosani. Accessit Doctrinae Analyticae inuentum nouum, collectum
ex varits etusdem D. de Fermat Epistolis. Tolosae, Ezxcudebat
Bernardus Bosc, ¢ Regione Collegii Societatis fesu. MDCLXX,
This edition was not published by Fermat himself, but by his
son after his death. S. Fermat tells us in the preface that this
publication of Fermat’s notes to Diophantus® was part of an
attempt to collect together from his letters and elsewhere his
contributions to mathematics. The “Doctrinae Analyticae In-
uentum nouum” is a collection made by Jacobus de Billy*

! Deinde Latinum damus tibi Diophantum ex Xilandri versione accuratissimé castigata,
in qua duo potissimum nos praestitisse scias velim, nam et deprauata correximus, hiantesque
passim lacunas repleuimus : et quae subobscuré, vel ambigué fuerat interpretatus Xilander,
dilucidius exposuimus; fateor tamen, inde tantam inductam esse mutationem, vt prope-
modum aequius sit versionem istam nobis quam Xilandro tribuere. Si quis antem potius
ad eum pertinere contendat, qudd eius verba, quatenus Diophanto fraudi non erant,
mordicus retinuimus, per me licet.” 27,323+

8 Now published in Fwuvres de Fermart by P. Tannery and C. Henry, Vol. 1. (1891),
pp- 289-342 (the Latin original), and Vol. 111. (1896}, pp. 241274 (French translation).

4 Now published in Fuvres de Fermat, 1. 323-398 (French translation). De
Billy had already published in 1660 a book under the title Diophantus geometra sive
opus contextum ex arithmetica et geometria.
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from various letters which Fermat sent to him at different times.
The notes upon Diophantus’ problems, which his son hopes will
prove of value very much more than commensurate with their
bulk, were (he says) collected from the margin of his copy of
Diophantus. From their brevity they were obviously intended
for the benefit of experts’, or even perhaps solely for Fermat’s
own, he being a man who preferred the pleasure which he had
in the work itself to any reputation which it might bring
him. Fermat never cared to publish his investigations, but was
always perfectly ready, as we see from his letters, to acquaint
his friends and contemporaries with his results. Of the notes
themselves this is not the place to speak in detail. This edition
of Diophantus is rendered valuable only by the additions in it .
due to Fermat; for the rest it is a mere reprint of that of 1621.
So far as the Greek text is concerned, it is very much inferior
to the first edition. There is a far greater number of misprints,
omissions of words, confusions of numerals; and, most serious of
all, the brackets which Bachet inserted in the edition of 1621 to
mark the insertion of words in the text are in this later edition
altogether omitted. These imperfections have been already noticed
by Nesselmann® Thus the reprinted edition of 1670 is untrust-
worthy as regards the text.

In 1585 Simon Stevin published a French version of the first
four books of Diophantus®. It was based on Xylander and was
a free reproduction, not a translation, Stevin himself observing that
the MS. used by Xylander was so full of mistakes that the text of

1 Lectori Beneuolo, p. iii : * Doctis tantum quibus pauca sufficiunt, harum obserua-
tionum auctor scribebat, vel potius ipse sibi scribens, his studiis exerceri malebat quam
gloriari ; adeo autem ille ab omni ostentatione alienus erat, vt nec lucubrationes suas
typis mandari curanerit, et suorum quandoque responsorum autographa nullo seruato
exemplari petentibus vltrd miserit; norunt scilicet plerique celeberrimorum huius saeculi
Geometrarum, quam libenter ille et quanti humanitate, sua iis inunenta patefecerit.”

2 «Was dieser Abdrck an Ausserer Eleganz gewonnen hat (denn die Bachet’sche
Ausgabe ist mit dusserst unangenehmen, namentlich Griechischen Lettern gedruckt), das
hat sie an innerm Werthe in Bezug auf den Text verloren, Sie ist nicht bloss voller
Druckfehler in einzelnen Worten und Zeichen (z. B. durchgehends = statt 3, goo)
sondern auch ganze Zeilen sind ausgelassen oder doppelt gedruckt (z. B. IIL 12 eine
Zeile doppelt, 1v. 25 eine doppelt und gleich hinterher eine ausgelassen, 1V. 52 eine
doppelt, V. 11 eine ausgelassen, desgleichen V. 14, 25, 33, VL. 8, 13 und so weiter), die
Zahlen verstiimmelt, was aber das.- Aergste ist, die Bachet’schen kritischen Zeichen sind
fast iiberall, die Klammer durchgingig weggefallen, so dass diese Ausgabe als Text des
Diophant véllig unbrauchbar geworden ist,” p. 283.

3 Included in Z’Arithmetique de Simon Stevin de Bruges...A Leyde, De I'Imprimerie
de Christophle Plantin, CID .10 . LXXXV.
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Diophantus could not be given word for word:. Albert Girard
added the fifth and sixth books to the four, and this complete
version appeared in 16252

In 1810 was published an excellent translation (with additions)
of the fragment upon Polygonal Numbers by Poselger: Digplhantus
von Alexandrien iiber die Polygonal-Zaklen. Uebersetst mit Zusitzen
von F. Th. Poselger. Leipzig, 1810,

‘In 1822 Otto Schulz, professor in Berlin, published a very
meritorious German translation with notes: Digphantus wvon
Alexandria arithmetische Aufgaben nebst dessen Schrift iiber die
Polygon-Zakhlen. Aus dem Griechischen idibersetst und mit An-
merkungen begleitet von Otlo Schuls, Professor am DBerlinisch-
Colnischen Gymnasium zum grauen Kloster. DBerlin, 1822. [In der
Schlesingerschen Buck- und Musikhandliung. The work of Poselger
just mentioned was with the consent of its author incorporated in
Schulz’s edition along with his own translation and notes upon
the larger treatise, the Awithmetica. According to Nesselmann
Schulz was not a mathematician by profession; he produced,
however, a thoroughly useful edition, with notes chiefly upon
the matter of Diophantus and not on the text (with the exception
of a very few emendations): notes which, almost invariably correct,
help much to understand the author. Schulz’s translation is based
upon the edition of Bachet’s text published in 1670.

Another German translation was published by G. Wertheim
in 1890: Die Arithmetik und die Schrift iiber Polygonalzahlen des
Diophantus von Alexandyia. Ubersetst und it Anmerkungen
begleitet von G. Wertheim (Teubner). Though it appeared before
the issue of Tannery’s definitive text, it is an excellent translation,
the translator being thoroughly equipped for his task; it is valuable
also as containing Fermat’s notes, also translated into German, with
a large number of other notes by the translator elucidating both
Diophantus and Fermat, and generalising a number of the problems
which, with very few exceptions, receive only particular solutions
from Diophantus himself. Wertheim has also included 46 epigram-
problems from the Greek anthology and the enunciation of the
famous Cattle-Problem attributed to Archimedes.

1 See Bibliotheca Matkematica Vily, 1906~7, p. 59.

2 L Arithmetique de Simon Stevin de Bruges, Reueus, corrigee & augmentee de plusieurs
traictes et annotation par Albert Girard Samiclois Mathematicien. A Leide, de
PImprimerie des Elzeviers C10.10.cxXXV. Reproduced in the edition of Les Fuwres
Mathematiques de Simon Stevin de Bruges. Par Albert Girard. Leyde, CID . 10 . CXXXIV.
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No description is necessary of the latest edition, by Tannery,
in which we at last have a definitive Greek text of Diophantus
with the ancient commentaries, etc., Diophanti Alexandrini opera
omnia cum Graecis commentartis. Edidit et Latine interpretatus
est Paulus Tannery (Teubner). The first volume (1893) contains
the text of Diophantus, the second (1895) the Pseudepigrapha,
Testimonia veterum, Pachymeres’ paraphrase, Planudes’ com-
mentary, various ancient scholia, etc., and 38 arithmetical epigrams
in the original Greek with scholia. Any further edition will neces-
sarily be based on Tannery, who has added all that is required in
the shape of introductions, etc.

Lastly we hear of other works on Diophantus which, if they
were ever written, are lost or remain unpublished. First, we find
it asserted by Vossius (as some have understood him) that the
Englishman John Pell wrote an unpublished Commentary upon
Diophantus. John Pell (1611-1685) was at one time professor
of mathematics at Amsterdam and gave lectures there on Dio-
phantus, but what Vossius says about his commentary may
well be only a recommendation to undertake a commentary,
rather than a historical assertion of its completion. Secondly,
Schulz states in his preface that he had lately found a note in
Schmeisser’s Orthodidaktik der Mathematik that Hofrath Kausler
by command of the Russian Academy prepared an edition of
Diophantus’. This seems however to be a misapprehension on the
part of Schulz. Kausler is probably referring, not to a translation
of Diophantus, but to his memoir of 1798 published in Nova Acta
Acad. Petropol. X1. p. 125, which might easily be described as an
Ausarbeitung of Diophantus’ work.

I find a statement in the New American Cyclopaedia (New York,
D. Appleton and Company), Vol. VL, that “a complete translation
of his (Diophantus’) works into English was made by the late
Miss Abigail Lousada, but has not been published.”

1 The whole § ge of Schmet is: **Die hanische, geistlose Behandlung der
Algebra ist ins besondere von Herrn Hofrath Kausler stark geriigt worden. In der
Vorrede zu seiner Ausgabe des Ufakerschen Exempelbucks beginnt er so : * Seit mehreren
Jahren arbeitete ich fir die Russisch-Kaiserliche Akademie der Wi haften Di
unsterbliches Werk uber die Arithmetik aus, und fand darin einen solchen Scbatz von

den feinsten, scharfsinni Igebraischen Auflosungen, dass mir die mechanische,
geistlose Methode der ne\len Algebm mil jedem Tage mebr ekelte us.w.”” (p. 33).




CHAPTER III
NOTATION AND DEFINITIONS OF DIOPHANTUS

As it is my intention, for the sake of brevity and per-
spicuity, to make use of the modern algebraical notation in giving
my account of Diophantus’ problems and general methods, it is
necessary to describe once for all the machinery which our author
uses for working out the solutions of his problems, or the notation
by which he expresses such relations as would be represented in
our time by algebraical equations, and, in particular, to illustrate
the extent to which he is able to manipulate unknown quantities.
Apart, however, from the necessity of such a description for the
proper and adequate comprehension of Diophantus, the general
question of the historical development of algebraical notation
possesses great intrinsic interest. Into the general history of this
subject I cannot enter in this essay, my object being the elucidation
of Diophantus ; I shall accordingly in general confine myself to an
account of his notation solely, except in so far as it is interesting
to compare it with the corresponding notation of his editors and
(in certain cases) that of other writers, as, for example, certain of
the early Arabian algebraists.-

First, as to the representation of an unknown quantity. The
unknown quantity, which Diophantus defines as containing mA7fos
povadwy dépioTov, fe. an undefined number of units (def. 2), is
denoted throughout by what was printed in the editions before
Tannery’s as the Greek letter ¢ with an accent, thus ¢, or in the
form ¢%. This symbol in verbal description he calls ¢ dpifuds, “ the
number,” z.¢., by implication, the number par excellence of the problem
in question. In the cases where the symbol is used to denote in-
flected forms, e.g., the accusative singular or the dative plural, the
terminations which would have been added to the stem of the full
word dptfuds were printed above the symbol s in the manner of an
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exponent, thus s* (for ap:fudy, as ™ for Tov), s°%, the symbol being
in addition doubled in the plural cases, thus ss% s5°, ¢¢#¥, gs%s, for
apifuoi k.r.é. When the symbol is used in practice, the coefficient
is expressed by putting the required Greek numeral immediately
after it, thus ss® ta corresponds to 11%, s’ @ to x and so on.

Tannery discusses the question whether in the archetype (a) of
the MSS. this duplication of the sign for the plural and this
addition of the terminations of the various cases really occurred?,
He observes that any one accustomed to reading Greek MSS. will
admit that the marks of cases are common in the later MSS. but
are very frequently omitted in the more ancient. Further, the
practice of duplicating a sign to express the plural is more ancient
than that of adding the case-terminations. Tannery concludes that
the case-terminations (like the final syllables of abbreviations used
for other words) were very generally, if not always, wanting in the
archetype (2). If this seems inconsistent with the regularity with
which they appear in our MSS,, it has to be remembered that 4
and B, do not represent the-archetype () but the readings of a, the
copyist of which probably took it upon himself to substitute the
full word for the sign or to add the case-terminations. Tannery’s
main argument is the frequent occurrence of instances where the
wrong case-ending has been added, eg., the nominative for the
genitive ; the conclusion is also confirmed by instances in which
different cases of the word dp:ifpuos, eg. apifpod, aptfudr, and even
dplfudy written in full are put by mistake for xai owing to the
resemblance between the common abbreviation for kxai and the
sign for dptfuds, and of course in such cases the abbreviation would
not have had the endings. As regards the duplication of the sign
for the plural, Tannery admits that this was the practice of the
Byzantines ; but he considers that the evidence is against sup-
posing that Diophantus duplicated the sign; he does not do so
with any other of his technical abbreviations, those for povds,
8vvaps, etc.  Accordingly in his text of Diophantus Tannery has
omitted the case-endings and written the single sign for dp:fuos
whether in the singular or in the plural; in his second volume,
however, containing the scholia, etc., he has retained the duplicated
sign.

On the assumption that the sign was the Greek final sigma, it
was natural that Nesselmann should explain it by the supposition

! Dioph. 11, pp. xxxiv-xxxix.
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that Diophantus, in search of a convenient symbol for his unknown
quantity, would select the only letter of the Greek alphabet which
was not already appropriated as a numeral’. But he made the
acute observation? that, as the symbol occurred in many places (of
course in Bachet’s text) for dpifuos used in the ordinary un-
technical sense, and was therefore, as it appeared, not exclusively
used to designate the unknown quantity, the technical ap:fuds, it
must after all be more of the nature of an abbreviation than an
algebraical symbol like our x. It is true that this uncertainty in
the use of the sign in the MSS. is put an end to by Tannery, who
uses it for the technical dp:fuds alone and writes the untechnical
apifués in full ; but, even if Diophantus’ practice was as strict as
this, I do not think this argues any difference in the nature of the
abbreviation. There is also a doubt whether the final sigma, s,
was developed as distinct from the form & so early as the date of
the MSS. of Diophantus, or rather so early as the first copy of his
work, if the author himself really gave the explanation of the sign
as found in our text of his second definition. These considerations
suggested to me that the sign was not the final sigma at all, but
must be explained in some other way. I had to look for con-
firmation of this to the precise shape of the sign as found in extant
MSS. The only MS. which I had the opportunity of inspecting
personally was the MS. of the first ten problems of Diophantus in
the Bodleian ; but here I found strong confirmation of my view in
the fact that the sign appeared as’¢3, quite different in shape from,
and much larger than, the final sigma at the end of words in the
same MS. (There is in the Oxford MS. the same irregularity as
was pointed out by Nesselmann in the use of the sign sometimes
for the technical, and sometimes for the untechnical, dpifués?)
But I found evidence that the sign appeared elsewhere in some-
what different forms. Thus Rodet in the Journal Asiatique of
January, 1878, quoted certain passages from Diophantus for the
purpose of comparison with the algebra of Muhammad b. Masa
al-Khuwarazmi. Rodet says he ccpied these passages exactly
from Bachet’s MS.; but, while he generally gives the sign as the
final sigma, he has in one case Yy* for dpifuoi. In this last case

! Nesselmann, pp. 2go-1. 2 {bid. pp. 300-1.

3 An extreme case is érafa 70 ol devrépov’c> dpiBuol évbs, where the sign (contrary to
what would be expected) means the untechnical dpifués, and the technical is written in
full. Also in the definition 6 8¢ undéy TobTwy TGV lBiwudTwy KTYTdNErDs...dpbBuds KakeiTar

the word dptfués is itself denoted by the symbol showing that the word and the symbol
are absolutely convertible. =
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Bachet himself reads 5. But the same form Yyy* which Rodet
gives is actually found in three places in Bachet’s own edition.
(1) In his note to Iv. 3 he gives a reading from his own MS. which
he has corrected in his own text and in which the signs ya and
Yyz occur, evidently meaning apifuds @ and dpifuoi 4, though the
sign should have been that for dpifposéy (= 1/x). (2) In the text of
Iv. 13 there is a sentence (marked by Bachet as interpolated) which
contains the expression Yyg, where the context again shows that
Yy is for dpifuoi. (3) At the beginning of V. g there is a difficulty
in the text, and Bachet notes that his MS. has pijre 6 Simhaciorv
adTod Y where a Vatican MS. reads @pifudv (Xylander notes that
his MS. had in this place wire ¢ Simhaciwr avTod dp pé G ...).
It is thus clear that the MS. (Paris. 2379) which Bachet used
sometimes has the sign for dpifuds in a form which is at least
sufficiently like Y to be taken for it. Tannery states that the form
of the sign found in the Madrid MS. (4) is Y, while B, has it in a
form () nearly approaching Bachet’s reproduction of it.

It appeared also that the use of the sign, or something like
it, was not confined to MSS. of Diophantus; on reference to
Gardthausen, Griechische Palaeographie, 1 found under the head
“hieroglyphisch-conventionell” an abbreviation §, ¢4 for dpifuds,
-of, which is given as occurring in the Bodleian MS. of Euclid
(D’Orville 301) of the gth century. Similarly Lehmann® notes as
a sign for dpfuds found in that MS. a curved line similar to that
which was used as an abbreviation for xaf. He adds that the
ending is placed above it and the sign is doubled for the plural.
Lehmann’s facsimile is like the form given by Gardthausen, but has
the angle a little more rounded. The form Yy above mentioned
is also given by Lehmann, with the remark that it seems to be
only a modification of the other. Again, from the critical notes to
Heiberg’s texts of the Arenarius of Archimedes it is clear that the
sign for dpifuds occurred several times in the MSS. in a form
approximating to that of the final sigma, and that there was the
usual confusion caused by the similarity of the signs for dptfuos
and xai®. In Hultsch’s edition of Heron, similarly, the critical
notes to the Geodaesia show that one MS. had an abbreviation for

1 Lehmann, Dic tachygraphischen Abkiirsungen der griechischen Handschriften, 1880,
p- 107 : “Von Sigeln, welchen ich auch anderwirts begegnet bin, sind zu nennen dp:fués,
das in der Oxforder Euclidhandschrift mit einer der Note «af dhnlichen Schlangenlinie
bezeichnet wird.”

2 Cf. Heiberg, Quaestiones Archimedear, pp. 172, 174, 187, 188, 191, 1925 Archimedis
opera omnia, 11., pp. 268 sqq.

3—2
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dpifuds in various forms with the case-endings superposed ; some-
times they resembled the letter {, sometimes p, sometimes O and
once £. Lastly, the sign for dpifuds resembling the final sigma
evidently appeared in a MS. of Theon of Smyrna®

All these facts strongly support the assumption that the sign
was a mere tachygraphic abbreviation and not an algebraical
symbol like our #, though discharging much the same function.
The next question is, what is its origin ? The facts (1) that the
sign has the breathing prefixed in the Bodleian MS., which writes
S for apiBuds, and (2) that in one place Xylander’'s MS. read ap
tor the full word, suggested to me the question whether it could
be a contraction of the first two letters of ¢pifuds ; and, on con-
sideration, this seemed to me quite possible when I found a
contraction for ap given by Gardthausen, namely ¢p. . It is easy to
see that a simplification of this in different ways would readily
produce signs like the different forms shown above. This then
was the hypothesis which I put forward twenty-five years ago, and
which I still hold to be the easiest and best explanation. Two
alternatives are possible. (1) Diophantus may not have made the
contraction himself. In that case I suppose the sign to be a cur-
sive contraction made by scribes ; and I conceive it to have come
about through the intermediate form $.  The loss of the downward
stroke, or of the loop, would produce a close approximation to
the forms which we know. (2) Diophantus may have used a sign
approximately, if not exactly, like that which we find in the MSS.
For it is from a papyrus of 154 A.D, in writing of the class which
Gardthausen calls the “Majuskelcursive,” that the contraction ¢jP for
the two letters is taken. The great advantage of my hypothesis is
that it makes the sign for dptfués exactly parallel to those for the
powers of the unknown, eg., 4" for 8dwauss and K for «dfBos, and

to that for the unit povas which is denoted by 1&0[, with the sole
difference that the letters coalesce into one instead of being
written separately.

Tannery’s views on the subJect are, I think, not very con-
sistent, and certainly they do not commend themselves to me. He
seems to suggest that the sign is the ancient letter Koppa, perhaps
slightly modified ; he first says that the sign in Diophantus is
peculiar to him and that, although the word @pfuds is very often

! Heron, ed. Hultsch, pp. 146, 148, 149, 150.
2 Theon of Smyma, ed. Hiller, p. 56, critical notes.
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represented in mathematical MSS. by an abbreviation, it has much
oftener the form ¢ or something similar, closely resembling the
ancient Koppa. In the next sentence he seems to say that “on
the contrary the Diophantine abbreviation is an inverted di-
gamma”; yet lower down he says that the copyist of a (copied
from the archetype @) got the form Y by simplifying the more
complicated Koppa. And, just before the last remark, he has
stated that in the archetype a the form must have been S or very
like it, as is shown by the confusion with the sign for xai. (If this
is so, it can hardly have been peculiar to Diophantus, seeing that
the same confusion occurs fairly often in the MSS. of other
authors, as above shown.) I think the last consideration (the con-
fusion with xaf) is very much against the Koppa-hypothesis ; and,
in any case, it seems to me very unlikely that a sign would be
used by Diophantus for the unknown which was already appro-
priated to the number go. And I confess I am unable to see in
the sign any resemblance to an inverted digamma.

Hultsch! regards it as not impossible that Diophantus may
have adopted one of the signs used by the Egyptians for their
unknown quantity %ax, which, if turned round from left to right,
would give Y; but here again I see no particular resemblance.
Prof. D’Arcy Thompson? has a suggestion that the sign might be
the first letter of cwpds, a heap. But, apart from the fact that the
final sigma (s) is not that first letter, there is no trace whatever
in Diophantus of such a use of the word cwpés; and, when
Pachymeres® speaks of a number being cwpeia povadwr, he means
no more than the mA#fos povdSwy which he is explaining : his
words have no connexion with the Egyptian /Aau.

Notwithstanding that the sign is not the final sigma, I shall
not hesitate to use ¢ for it in the sequel, for convenience of
printing. Tannery prints it rather differently as s.

We pass to the notation which Diophantus used to express the
different powers of the unknown quantity, corresponding to 2%, %,
and so on. He calls the square of the unknown quantity SYwvauus,
and denotes it by the abbreviation 4. The word Svwaucs,
literally “power,” is constantly used in Greek mathematics for

1 Art, Diophantus in Pauly-Wissowa’s Real-Encyclopidie der classischen Altertums-
wissenschaften.

1 Tyansactions of the Royal Society of Edinburgh, Vol. XXxviil. (1896), pp. 607-9.

3 Dioph. I1. p. 78, 4. Cf. Iamblichus, ed. Pistelli, p. 7, 75 34, 35 81, 14, Where swpela,
is similarly used to elucidate w\fj6os.
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square’. With Diophantus, however, it is not any square, but only
the square of the unknown; where he speaks of any particular
square number, it is rerpdywvos dpifuss. The higher powers of the
unknown quantity which Diophantus makes use of he calls #¥3os,
Svvapodivauis, SuvaudrkvBos, xvBdrvBos, corresponding respectively
to 2%, #4, 2%, 2% Beyond the sixth power he does not go, having
no occasion for higher powers in the solutions of his problems. For
these powers he uses the abbreviations X¥, 44, 4K, K'K re-
spectively. Thereis a difference between Diophantus’use of the word
Svwaus and of the complete words for the third and higher powers,
namely that the latter are not always restricted like 8Yvaus to powers
of the unknown, but may denote powers of ordinary known num-
bers as well. This is no doubt owing to the fact that, while there
are two words 8vvaus and Terpdywvos which both signify “square,”
there is only one word for a third power, namely «Bos. It is
important, however, to observe that the abbreviations X%, 474,
AK*, K¥K, are, like 8bvapuis and A%, only used to denote powers
of the unknown. The coefficients of the different powers of the
unknown, like that of the unknown itself, are expressed by the
addition of the Greek letters denoting numerals, e.g., 4K” k5 cor-
responds to 262°. Thus in Diophantus’system of notation the signs
AY and the rest represent not merely the exponent of a power like
the 2 in 2% but the whole expression z% There is no obvious
connexion between the symbol 4¥ and the symbol s of which it is
the square, as there is between 2* and x, and in this lies the great
inconvenience of the notation. But upon this notation no advance
was made by Xylander, or even by Bachetand Fermat. They wrote
N (which was short for Numerus) for the s of Diophantus, @ (Quad-
ratus) for 4%, C (Cubus) for K¥, so that we find, for example,
10 + 5V =24, corresponding to 2*+ 5z =24. Other symbols were
however used even before the publication of Xylander’s Diophantus,
eg. in Bombelli’s Algebra. Bombelli denotes the unknown and its
powers by the symbols L 2,2 and so on. But it is certain that
up to this time (1572) the common symbols had been R (Radix
or Res), Z (Zensus, ie. square), C (Cubus). Apparently the first
important step towards 2%, 2% etc., was taken by Vieta (1540—

1 In Plato we have ddwams used for a square number (Zimacws, 31) and also
(Theactetus, 147 D) for a sguare root of a number which is not a complete square, i.c. for
a surd ; but the commonest use is in geometry, in the form Suvdue, “ in square,” .g. *“ 4B
is durduet double of BC " means ““ 4 B2 = 2BC1”
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1603), who wrote Ag, Ac, Agg, etc. (abbreviated for A guadratus
and so on) for the powers of 4. This system, besides showing the
con..exion between the different powers, has the infinite advantage
that by means of it we can use in one and the same solution any
number of unknown quantities. This is absolutely impossible with
the notation used by Diophantus and the earlier algebraists.
Diophantus in fact never uses more than one unknown quantity in
the solution of a problem, namely the @ptfuds or s.

Diophantus has no symbol for the operation of multiplication ;
it is rendered unnecessary by the fact that his coefficients are all
definite numbers or fractions, and the results are simply put down
without any preliminary step which would call for the use of a
symbol. On the ground that Diophantus uses only numerical
expressions for coefficients instead of general symbols, it might
occur to a superficial observer that there must be a great want
of generality in his methods, and that his problems, being solved
with reference to particular numbers only, would possess the
attraction of a clever puzzle rather than any more general interest.
The answer to this is that, in the first place, it was absolutely
impossible that Diophantus should have used any other than
numerical coefficients, for the reason that the available symbols of
notation were already employed, the letters of the Greek alphabet
always doing duty as numerals, with the exception of the final s.
In the second place, it is not the case that the use of none but
numerical coefficients makes his solutions any the less general.
This will be clearly seen when 1 come to give an account of his
problems and methods.

Next as to Diophantus’ expressions for the operations of
addition and subtraction. For the former no symbol at all is
used : it is expressed by mere juxtaposition, thus K¥ad” vyse
corresponds to #°+ 132?452 In this expression, however, there
is no absolute term, and the addition of a simple numeral, as
for instance B, directly after & the coefficient of s, would cause
confusion. This fact makes it necessary to have some expression
to distinguish the absolute term from the variable terms. For this
purpose Diophantus uses the word wovaSes, or units, and denotes

L)
them after his usual manner by the abbreviation M. The number
of units is expressed as a coefficient. Thus corresponding to
the expression #*+ 132%+ 5r+2 we should find in Diophantus

K@ wseMB. As Bachet uses the sign + for addition, he



40 INTRODUCTION

has no occasion for a distinct symbol to mark an absolute term.
He accordingly writes 1€+ 130+ 5NV +2. It is worth observing,
however, that the Italians do use a symbol in this case, namely NV
(Numero), the first power of the unknown being with them R
(Radice). Cossali’ makes an interesting comparison between the
terms used by Diophantus for the successive powers of the unknown
and those employed by the Italians after their instructors, the
Arabians. He observes that Fra Luca (Paciuolo), Tartaglia, and
Cardano begin their scale of powers from the power 0, not from the
power 1, as does Diophantus, and he compares the scales thus:

Scala Diofantea. Scala Araba.
ensensesssananeennsss oo 1. Numero...il Noto.
x 1. Numero...I’ Ignoto. 2. Cosa, Radice, Lato,
x* 2. Podesta. 3. Censo.
a3 3 Cubo 4. Cubo.
x* 4. Podesta-Podesta. 5. Censo di Censo.
2% 5. Podestid-Cubo. 6. Relato 1o
2% 6. Cubo-Cubo. 7. Censo di Cubo, o Cubo di Censo.
EL N O oA A 8. Relato 2°
X8 8. 9. Censo di Censo di Censo.
2 9. 10. Cubo di Cubo.

and so on.® So far, however, as this is meant to be a comparison
between Diophantus and the early Arabian algebraists themselves
(as the title “ Scala 47aba” would seem to imply), there appears to
be no reason why Cossali should not have placed some term to
express Diophantus’ povades in the same line with Numero in the
Arabian scale, and moved the numbers 1, 2, 3, etc. one place
upwards in the first scale, or downwards in the second. As
Diophantus does not go beyond the sixth power, the last three
places in the first scale are left blank. An examination of these
two scales will show also that the evolution of the successive
powers differs in the two systems. The Diophantine terms for
them are based on the addition of exponents, the Arabic on

! Upon Wallis’ comparison of the Diophantine with the Arabian scale Cossali
remarks: ‘““ma egli non ha riflettuto a due altre differenze tra le scale medesime. La
- prima si &, che laddove Diofanto denomina con singolaritd Numero il numero_ignoto,
denominando Monade il numero dato di comparazione : gli antichi italiani degli arabi
seguaci denominano questo il Numero; e Radice, o Lato, o Cosa il numero sconosciuto.
La seconda ¢, che Diofanto comincia la scala dal numero ignoto; e Fra Luca, Tartaglia,
Cardano la incominciano dal numero noto. Ecco le due scale di rincontro, onde meglio
risaltino all’ occhio le differenze loro”, I. p. 195.



NOTATION AND DEFINITIONS OF DIOPHANTUS 41

their multiplication’. "Thus the “ cube-cube” means in Diophantus
2% while the Italian and Arabian system uses the expression “ cube
of cube” and applies it to 2°. The first system may (says Cossali)
be described as the method of representing each power by the
product of the two lesser powers which are the nearest to it, 2
method of multiplication; the second the method of elevation, i.e. the
method which forms by the process of squaring and cubing all
powers which can be so formed, as the 4th, 6th, 8th, gth, etc.
The intermediate powers which cannot be so formed are called
in Italian Relati. Thus the fifth power is Relato 1° 27 is
Relato 2°, 2 is Censo di Relato 1°, 2 is Relato 3°, and so on.
Another name for the Relati in use among European algebraists in
the 16th and 17th centuries was sursolida, with the variants super-
solida and surdesolida.

It is interesting to compare with these systems the Egyptian
method described by Psellus®. The next power after the fourth
(Suvapodivapuss), i.e. 2% the Egyptians called “ the first undescribed ”
(d\oyos here apparently meaning that of which no account can
be given), because it is neither a square nor a cube; alternatively
they called it “the fifth number,” corresponding to the fifth power
of . The sixth power they apparently called “cube-cube”; but
the seventh was “the second undescribed” (&\oyos SevTepos), as
being the product of the square and the “first undescribed,” or,
alternatively, the “seventh number.” The eighth power was the
“quadruple-square” (teTpamAi} Svvapss), the ninth the “extended
cube” (xvBos éfehiktos). Thus the “first undescribed” and the
« second undescribed ” correspond to “ Relato 1°” and “Relato 2°”
respectively, but the “quadruple-square” exhibits the additive
principle.’

For subtraction Diophantus uses a symbol. His full term for
negation or wanting is Aetyus, corresponding to Tmapfis which
denotes the opposite. The symbol used to denote it in the MSS,,
and corresponding to our — for minus, is (Def. 9 xai 175 Aeifrews
onuetov ¥ \\umés xdTo vebov, A) “an inverted ¥ with the top

! This statement of Cossali’s needs qualification however. Thereisat least one Arabian
algebraist, al-Karkhi (died probably about 1029), the author of the Fak#si, who uses the
Diophantine system of powers of the unknown depending on the addition of exponents.
Al-Karkhi, namely, expresses all powers of the unknown above the third by means of
mal, his term for the square, and #2°4, his term for the cube of the unknown, as follows.
The fourth power is with him md/ mal, the fifth mal ka's, the sixth ka'é ka', the seventh
mal mal ka'b, the eighth mal ka'b ka'4, the ninth 24’6 ka'b ka'b, and so on. Among the

Italians too there was an exception, Leonardo of Pisa, who proceeded on the additive
principle (Bibliotheca Mathematica, Vi, 1905-6, p- 310). 2 Dioph. 11. p. 37-38.
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shortened, A.” As Diophantus uses no distinct sign for +, it
is clearly necessary, in order to avoid confusion, that all the
negative terms in an expression should be placed together
after all the positive terms. And so in fact he does place them.
Thus corresponding to #* — 5%+ 8 — 1, Diophantus would write
KYEQﬁA\AYEIfIE. With respect to this curious sign, given in
the MSS. as T and described as an inverted truncated V¥, I believe
that I was the first to suggest that it could not be what it is
represented as being. Even when, as in Bachet’s edition, the
sign was printed as g I could not believe that Diophantus used
so fantastic a sign for minus as an inverted truncated ¥. In
the first place, an inverted ¥ seems too far-fetched; to one who
was looking for a symbol to express minus many others more
natural and less fantastic than \ must have suggested themselves.
Secondly, given that Diophantus used an inverted ¥, why should he
truncate it? Surely that must have been unnecessary; we could
hardly have expected it unless, without it, confusion was likely
to arise; but qv could not well have been confused with anything.
This very truncation itself appears to throw doubt on the description
of the symbol as we find it in the MS. I concluded that the con-
ception of this symbol as an inverted truncated ¥ was a mistake,
and that the description of it as such is not Diophantus’ description,
but an explanation by a scribe of a symbol which he did not
understand’. I believe that the true explanation is the following.
Diophantus here took the same course as in the case of the other
symbols which we have discussed (those for @pifuds, Svvapuss, etc.).
As in those cases he took for his abbreviation the first letter of the
word with such an addition as would make confusion with numbers
impossible (namely the second letter of the word, which in each of
the cases happens to come later in the alphabet than the corre-
sponding first letter), so, in seeking an abbreviation for Aeiyris
and cognate inflected forms developed from A, he began by
taking the initial letter of the word. The uncial® form is A
Clearly A by itself would not serve his purpose, since it denotes
anumber. Therefore an addition is necessary. The second letter
is E, but AE is equally a number. The second letter of the stem

1 T am not even sure that the description can be made to mean all that it is intended
to mean. é\hurés scarcely seems to be sufficiently precise. Might it not be applied to
A with any part cut off, and not only the top?

2 I adhere to the uncial form above for clearness’ sake. If Diophantus used the

¢ Majuskelcursive ** form, the explanation will equally apply, the difference of form being
for our purpose negligible.
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M is I, but Al is open to objection when so written. Hence
Diophantus placed the | inside the A, thus, A. Of the possibility
of this I entertain no doubt, because there are undoubted cases
of combination, even in uncial writing, of two letters into one sign.
I would refer in particular to X, which is an uncial abbreviation for
TAANTON. Now this sign, A, is an inverted and truncated ¥
(written in the uncial form, ¥); and we can, on this assumption,
easily account for the explanation of the sign for minus which is
given in the text. y

The above suggestion, made by me twenty-five years ago,
seems to be distinctly supported by what Tannery says of the form
in which the sign appears in the MSS:! Thus he remarks (1) that
the sign in the MSS. is often made to lean to the right so that it
resembles the letter Lambda, (2) that Planudes certainly wrote X as
if he meant to write the first letter of Aeiyrer, and (3) that the
letter A appears twice in 4 where it seems to mean Aosmwés. Yet
in his edition of Diophantus Tannery did not adopt my explanation
or even mention it, but explained the sign as being in reality
adapted from the old letter Sampi (), the objection to which
suggestion is the same as that to which the identification of s with
Koppa is open, namely that 3 represented the number goo, as ¢
represented go. Tannery however afterwards® saw reason to
abandon his suggestion that the symbol was originally an archaic
form of the Greek Sampi rather than “un monogramme se
rattachant a la racine de Aeiyrs.” The occasion for this change
of view was furnished by the appearance of the same sign in the
critical notes to Schéne’s edition of the Metrica of Heron3, which
led Tannery to re-examine the evidence of the MSS. of Diophantus
as to the sign and as to the exact word or words which it re-
presented in different places, as well as to search for any similar
expressions denoting subtraction which might occur in the works
of other Greek mathematicians. In the MSS. of Diophantus,
when the sign is resolved by writing a full word instead of it,
it is generally resolved into Aelyre:, the dative of Aefyris; in such
cases the only grammatical possibility is to construct it with the
genitive case of the quantity subtracted, the meaning then being
“ with the wanting, or deduction, of ...”. But the best MS. (4)

! Dioph. 11. p. xli.

2 Bibliotheca Mathematica Vg, 1904—5, pp. 5-8.

3 Heronis Alexandrini opera, Vol. 111., 1903, pp, 156, 8, 10. The MS. reading is
povddwr od (P ' &', the meaning of which is 74— ¢
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has in some places the nominative Aefyres, while in others it has the
symbol instead of parts of the verb Aelmeww, namely \ewew or
Aeiyras and once even AMmwoe; hence we may conclude that in the
cases where 4 and B, have \eiyree followed by the accusative (which
is impossible grammatically) the sign was wrongly resolved, and
the full word should have been a participle or other part of the
verb Aelmew governing the accusative. The question therefore
arises whether Diophantus himself used the dative Aeiyre: at all
or whether it was introduced into the MSS. later. Certain it is
that the use is foreign to Classical Greek; but, even if it began
with Diophantus, it did not finally hold the field before the time of
Planudes. No evidence for it can be found in Greek mathe-
maticians before Diophantus. Ptolemy has in two places Aeijrav
and Aeimovoav respectively, followed by the accusative, and in
one case 1o amo Tis A Netpbév dmod Tod dmo Ths Z[ (where the
meaning is Z[—A?). Consequently we cannot suppose that the
sign where it occurs in the Metrica of Heron represents the dative
Melyrer; it must rather stand for a participle, active or passive.
Tannery suggests that the full expression in that passage was
povddwy 08 Neipbévros Tegaapakaidexdrou, the participle being
passive and the construction being the genitive absolute; but I
think a perhaps better alternative would be pova8wy 08 \ewfracév
TecaapaxaidécaTor, where the active participle would govern
the accusative case of the term subtracted. From all this we
may infer that the sign had no exclusive reference to the sub-
stantive Aeiyres, still less to the dative case of that substantive, but
was a conventional abbreviation associated with the root of the
verb Aelmeww. In these circumstances I think I may now fairly
claim Tannery as, substantially, a convert to my view of the
nature of the sign.

For division it often happens that no symbol is necessary,
Ze. in the cases where the divisor divides the dividend without
a remainder. In other cases the quotient has to be expressed
as a fraction, whether the divisor is a specific number or contains
the variable. The case of division comes then under that of
fractions.

Fractions are represented in different ways according as they are
submultiples (fractions with unity as numerator) or not. In the
case of submultiples the Greeks did not write the numerator, but
only the denominator, distinguishing the submultiple from the
cardinal number itself by affixing a certain sign. In more recent
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MSS. a double accent was used for this purpose: thus ¢”=}.
Diophantus follows this plan in the hypothesis and analysis of his
problems, though in the solutions he seems to have written the
numerator a and assimilated the notation to that used for other
fractions. The sign, however, added to the cardinal number to
express the submultiple takes somewhat different forms in 4 :
sometimes it is a simple accent, sometimes more elaborate, as »
above the letter and to the right, or actually forming a continuation
of the numeral sign, ¢g. #°=}. Tannery adopts as the genuine
mark in Diophantus the affix X in place of the accent: thus yX=1.
For 4 he writes L’ as being most suitable for the time of Diophantus,
though 4 has <, sometimes without the dot.

Of the other class of fractions (numerator not unity) % stands by
itself, having a peculiar sign of its own ; curiously enough it occurs
only four times in Diophantus. 4 has a sign for it which was
confused with that for dp:fuds in one place ; Tannery judges from
the Greek mathematical papyrus of Achmim? that its original form
was & ; he himself writes in his text the common form «’. In the
rare cases where the first hand in the oldest MS. (A4) has fractions
as such with numerator and denominator written in full, the
denominator is written above the numerator. Tannery therefore

adopts, in his text, this way of writing fractions, separating the
5
21

: 5 5 I
numerator and denominator by a horizontal line : thus pra=—g.

K
It is however better to omit the horizontal line (cf. pp‘r) in Kenyon
Papyri 1. No. cclxv. 40; also the fractions in Schone’s edition
of Heron’s Metrica). Once we find in the same MS. (4)in the first
hand the form ®=1%. In this latter method of writing fractions
the denominator is written as we write exponents; and this is the
method adopted by Planudes and by Bachet in his edition.
Another alternative is to write the numerator first, and then the
denominator after it in the same line, marking the denominator with
the submultiple sign in some form ; thus 48 would mean §; this is
the most convenient method for purposes of printing. Or the de-
nominator may be written as an abbreviation for the ord7na/ number,
and the case-termination may be added higher up; eg. v k" = 50
twenty-thirds. But the denominators are nearly always omitted

1 Published by Baillet in Mémoires publiés par les Membres de la Mission archlologique
frangaise au Caire, T. Ix, Fascicule 1, pp. 1-88. Paris, 1892.
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altogether in .the first hand of 4 ; in the first two Books B, and the
second hand of 4 give the denominator in the place in which we write
an exponent, following the method of Planudes; in the last four
Books both MSS. almost invariably omit the denominator. In
some cases the omission is not unnatural, ze. where the denominator
has once been given, and it is almost superfluous to repeat it
in other fractions immediately following which have the same
denominator ; in other cases it was probably omitted because the
superposed denominator was taken by the copyist to be an inter-
linear scholium. A few examples of fractions from Diophantus
may be added :

B B a.ca
% ! c 456 _ 5358 .
W= i (V. 10); Buve==—"""— (IV 28); etvm= E (V. 9);
Byd ey
v.,5XKa = 3— 62{ (1v. 16);  pra“” ,awAdL’ =18%?% (1v. 39);

pv8
-m9L’= 389% (V. 2).
152

Diophantus however often expresses fractions by putting év
popiw or popiov between the numerator and denominator ze. he

says one number divided by another. Cf. Mpu {7371-8 popiov

ks . Bpud=1507084/262144 (1V. 28), where of course M pupuddes
(tens of thousands); B.ex év mpoplo prf . axe=25600/1221025
(v. 22). As we said, the most orthodox way of writing a sub-
multiple was to omit the numerator (unity) and use the denominator
with a distinguishing sign attached, e;g. s* or ¢'=1. But in his
solutions Diophantus often uses the form applicable to fractions

3
other than submultiples; ¢g. he writes a for 5%2 (1v. 28).

Numbers partly integral and partly fractional, where the
fraction is a submultiple or the sum of submultiples, are written
much as we write them, the fraction simply following the integer ;
eg. ayX=1}; in the Lemma to V. 8 we have 8L’ ¢’ =21} or 23,
where 2 is decomposed into submultiples as in Heron. Cf. also
(I 11) 7oL 16X =370 % .

Before leaving the subject of numerical notation, it may be
convenient to refer to the method of writing large numbers.

. b
Myriads (tens of thousands) are expressed by M, myriads to the
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second power by MM or, in words, Sevrépa pvpids. The de-
nominator 187474560 in V. 8 would thus be written popiov Sevrépas

puptados a kal pvprador mpoTwy mul kal If[ 0¢&, and the fraction
131299224/1629586560 would be written Sevrépa pvpias a mpoTa

(nvpiades) ryprd M Bord popiov Sevrépwy pvpuidov is mpdrer

(pvpadov) B Avy M TrpEL

But there is another kind of fraction, besides the purely
numerical one, which is continually occurring in the Arithmetica,
such fractions namely as involve the unknown quantity in some
form or other in their denominators. The simplest case is that in
which the denominator is merely a power of the unknown, s.
Concerning fractions of this kind Diophantus says (Def. 3): “ As
fractions named after numbers have similar names to those of the
numbers themselves (thus a third is named from three, a fourth
from four), so the fractions homonymous with the numbers just
defined are called after them; thus from dpfuss we name
the fraction dplbpoatov [ie. 1/x from x], 70 Swwapostiv from
Stvauts, 16 xvBootov from «kiBos, 16 Svvapodvvaposriv from
Svvapoduvaps, To SvvapoxvBoorov from SuwapoxvBos, and 7o
xvBoxvBoatov from xvBoxvBos. And every such fraction shall
have, above the sign for the homonymous number, a line to
indicate the species.” Thus we find, for example, 1v. 3, ¢X 7 cor-
responding to 8/x and, Iv. 15, X Xe for 35/z. Cf. 4" %gv for 250/2%

Where the denominator is a compound expression involving the
unknown and its powers, Diophantus uses the expedient which he
often adopts with numerical fractions when the numerators and
denominators-are large numbers, namely the insertion of év popiw
or poplov between the expressions for the numerator and de-
nominator. Thus in VL 12 we have

Arfﬂollwév popiw AT4a M p A7E
= (602 + 2520)/(x* + 90O — 6az?),
and in VL 14
AT e N M ey popiw ATAG M e A AT B
= (152 = 36)/(x* + 36 - 124%).
For ioos, equal, connecting the two sides of an equation, the
sign in the archetype seems to have been ¢*; but copyists intro-

! Hultsch, &e. at.

.
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duced a sign which was sometimes confused with the sign Y for
dptfucs ; this was no doubt the same abbreviation Y as that shown
(with terminations of cases added above) in the list given at
the end of Codex Parisinus 2360 (Archimedes) of contractions
found in the “very ancient” MS. from which it was copied and
which was at one time the property of Georgius Vallal

Diophantus evidently put down his equations in the ordinary
course of writing, Ze. they were written straight on, as are the
steps in the propositions of Euclid, and not put in separate lines for
each step in the process of simplification. In the scholia of
Maximus Planudes however we find conspectuses of the problems
with steps in separate lines which, except for the slightly more
cumbrous notation, make the work scarcely more difficult to follow
than it is in our notation?. Though in the MSS. we have the
abbreviation ¢° to denote equality, Bachet makes no use of any
symbol for the purpose in his Latin translation. He uses
throughout the full Latin word. It is interesting however to observe
that in the notes to his earlier translation (1575) Xylander had
already used a symbol to denote equality, namely |, two short
vertical parallel lines. Thus we find, for example (p. 76),

10+ 12| 1Q+6N+09,
which we should express by 4% + 12 =42+ 62+ 9.

Now that we have described in detail Diophantus’ method of
expressing algebraical quantities and relations, it is clear that it is
essentially different in its character from the modern notation.
While in modern times signs and symbols have been developed

1 Heiberg, Quaestiones Archimedeac, p. 115.

2 One instance will suffice. On the left Planudes has abbreviations for the words
showing the nature of the steps or the operations they involve, ¢.g. 8. = &feous (setting-
out), Tep. =TeTpaywrisubs (squaring), otwd. =obvfeais (adding), d¢.=dgaipesis (subtrac-
tion), pep. = uepioubs (division), Um.=owapkes (resulting fact).

Dioph. 1. 28.
Planudes. “Modern equivalent.
I3 o7 [Given numbers] 20, 208
&0, sa po i MOt A sa Put for the numbers x + 10, 10— 1.
rerp.  A¥asskpop A¥pop A sk Squaring, we have 22+ 20x + 100,
2+ 100 - 20%.

oivl. Ayﬁp.“ i ¢ poon Adding, 24%+ 200=208.
dd. 4%B 17 poyq Subtracting, 24%=8.
pep. 4% o ud Dividing, #2=4.

sa i pog =50
o, o o7} Result : [the numbers are] 12, 8.
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which have no intrinsic relationship to the things which they
represent, but depend for their use upon convention, the case
is quite different in Diophantus, where algebraic notation takes
the form of mere abbreviation of words which are considered as
pronounced or implied.

In order to show in what place, in respect of systems of
algebraic notation, Diophantus stands, Nesselmann observes that
we can, as regards the form of exposition of algebraic operations
and equations, distinguish three historical stages of development,
well marked and easily discernible. (1) The first stage Nessel-
mann represents by the name Rbketorical Algebra or “reckoning by
complete words.” The characteristic of this stage is the absolute
want of all symbols, the whole of the calculation being carried on
by means of complete words, and forming in fact continuous prose.
As representatives of this first stage Nesselmann mentions Iambli-
chus (of whose algebraical work he quotes a specimen in his fifth
chapter) “and all Arabian and Persian algebraists who are at
present known.” In their works we find no vestige of algebraic
symbols; the same may be said of the oldest Italian algebraists
and their followers, and among them Regiomontanus. (2) The
second stage Nesselmann proposes to call the Syncopated Algebra.
This stage is essentially #%etorical, and therein like the first in
its treatment of questions; but we now find for often-recurring
operations and quantities certain abbreviational symbols. To
this stage belong Diophantus and, after him, all the later
Europeans until about the middle of the seventeenth century
(with the exception of Vieta, who was the first to establish,
under the name of Logistica speciosa, as distinct from Logistica
numerosa, a regular system of reckoning with letters denoting
magnitudes and not numbers only). (3) To the third stage
Nesselmann gives the name Symébolic Algebra, which uses a com-
plete system of notation by signs having no visible connexion
with the words or things which they represent, a complete language
of symbols, which supplants entirely the r/eforical system, it being
possible to work out a solution without using a single word of the
ordinary written language, with the exception (for clearness’ sake)
of a connecting word or two here and there, and so on’. Neither

! It may be convenient to note here the beginnings of some of our ordinary algebraical
symbols. The signs + and — first appeared in print in Johann Widman’s arithmetic
(1489), where however they are scarcely used as regular symbols of operation ; next they

are found in the Rechenbuch of Henricus Grammateus (Schreiber), written in 1518 but
perhaps not published till 1521, and then regularly in Stifel's Arithmetica integra (1544)

H. D. 4
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is it the Europeans from the middle of the seventeenth century
onwards who were the first to use symbolic forms of Algebra.
In this they were anticipated by the Indians.

Nesselmann illustrates these three stages by three examples,
quoting word for word the solution of a quadratic equation
by Muhammad b. Miisd as an example of the first stage, and
the solution of a problem from Diophantus as representing the
second.

First Stage. Example from Muhammad b. Misa (ed. Rosen,
p. 5). “A square and ten of its 7oots are equal to nine and thirty
dirhems, that is, if you add ten 7oots to one square, the sum is equal
to nine and thirty. The solution is as follows. Take half the number
of roots, that is in this case five; then multiply this by itself, and
the result is five and twenty. Add this to the nine and thirty,
which gives sixty-four; take the square root, or eight, and subtract
from it half the number of 7ooss, namely five, and there remain
three: this is the 700z of the sguare which was required, and the
square itself is zznel”

Here we observe that not even are symbols used for numbers,
so that this example is even more “7keforical” than the work of
Iamblichus who does use the Greek symbols for his numbers.

as well as in his edition of Rudolff’s Coss (1553). Vieta (1540-1603) has, in addition,
= for ~. Robert Recorde (1510-1558) had already in his Algebra (Zke Whetstons of
Witte, 1557) used =(but with much longer lines) to denote equality (* bicause noe.z.
thynges, can be moare equalle”). Harriot (1560-1621) denoted multiplication by a dot,
and also by mere juxtaposition of letters; Stifel (1487-1567) had however already
expressed the product of two magnitudes by the juxtaposition of the two letters represent-
ing them. Oughtred (1574-1660) used the sign x for multiplication. Harriot also
introduced the signs > and < for greater and less respectively. -~ for division is found
in Rahn’s Algebra (1659). Descartes introduced in his Geometry (1637) our method of
writing powers, as a%, a* etc. (except a?, for which he wrote aa) ; but this notation was
practically anticipated by Pierre Hérigone (Cours mathématique, 1634), who wrote az, a3,
a4, etc., and the idea is even to be found in the Rechenbuch of Grammateus above
mentioned, where the successive powers of the unkiiown are denoted by pri, se, ter, etc,
The use of x for the unknown quantity began with Descartes, who first used z, then y,and
then «x for this purpose, showing that he intentionally chose his unknowns from the last
letters of the alphabet. / for the square root is traceable to Rudolff, with whom it had
only two strokes, the first (down) stroke being short, and the other relatively long.
! Thus Muhammad b. Misa states in words the following solution.

x%+ 102 =39,

. 22+ 10x+25=64;
therefore x+5=8,
xr=3.
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Second Stage. As an example of Diophantus I give a trans-
lation word for word of 11. 8. So as to make the symbols correspond

exactly I use S (Square) for A7 (8bvapes), N (Number) for s, U

(Units) for m (novades).

“To divide the proposed square into two squares, Let it be
proposed then to divide 16 into two squares. And let the first be
supposed to be 1.5; therefore the second will be 16 U~1S. Thus
16 U — 1S must be equal to a square. I form the square from any
number of /V’s minus as many U’s as there are in the side of
16 U’s. Suppose this to be 2V —4U. Thus the square itself will
be 4S5 16U —16/. These are equal to 16U —~1S. Add to each
the negative term (7 Aeiys, the deficiency) and take likes from
likes. Thus 5.5 are equal to 164V, and the AV is 16 fifths. One
[square] will be %38, and the other %, and the sum of the two
makes up 49, or 16 U, and each of the two is a square.”

Of the #hird stage any exemplification is unnecessary.

To the form of Diophantus’ notation is due the fact that he
is unable to introduce into his solutions more than one unknown
quantity. This limitation has made his procedure often very dif-
ferent from our modern work. In the first place we can begin
with any number of unknown quantities denoted by different
symbols, and eliminate all of them but one by gradual steps in the
course of the work; Diophantus on the other hand has to perform
all his eliminations beforehand, as a preliminary to the actual
work, by expressing every quantity which occurs in the problem
in terms of only one unknown. This is the case in the great
majority of questions of the first Book, which involve the solu-
tion of determinate simultaneous equations of the first degree
with two, three, or four variables; all these Diophantus expresses
in terms of one unknown, and then proceeds to find it from a
simple equation. Secondly, however, this limitation affects much of
Diophantus’ work injuriously ; for, when he handles problems which
are by nature indeterminate and would lead with our notation to an
indeterminate equation containing two or three unknowns, he is
compelled by limitation of notation to assume for one or other of
these some particular number arbitrarily chosen, the effect of the
assumption being to make the problem a determinate one. How-
ever, it is but fair to say that Diophantus, in assigning an arbitrary
value to a quantity, is careful to tell us so, saying, “for such and
such a quantity we put any number whatever, say such and such a

4—2
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number.” Thus it can hardly be said that there is (as a rule) any
loss of generality. We may say, then, that in general Diophantus is
obliged to express all his unknowns in terms, or as functions, of
one variable. He compels our admiration by the clever devices
by which he contrives so to express them in terms of his single
unknown, s, as to satisfy by that very expression of them all
conditions of the problem except one, which then enables us to
complete the solution by determining the value of 5. Another
consequence of Diophantus’ want of other symbols besides s to
express more variables than one is that, when (as often happens)
it is necessary in the course of a problem to work out a subsidiary
problem in order to obtain the coefficients etc. in the functions of ¢
which express the numbers to be found, the unknown quantity
which it is the object of the new subsidiary problem to find is also
in its turn denoted by the same symbol s; hence we often have
in the same problem the same variable ¢ used with two different
meanings. This is an obvious inconvenience and might lead to
confusion in the mind of a careless reader. Again we find two
cases, 1. 28 and 29, where for the proper working-out of the
problem two unknowns are imperatively necessary. We should of
course use x and y; but Diophantus calls the first ¢ as usual; the
second, for want of a term, he agrees to call “one unit” ie. 1.
Then, later, having completed the part of the solution necessary to
find s, he substitutes its value, and uses s over again to denote
what he had originally called “1”—the second variable—and so
finds it. This is the most curious case of all, and the way in which
Diophantus, after having worked with this “1” along with other
numerals, is yet able to put his finger upon the particular place
where it has passed to, so as to substitute s for it, is very remark-
able. This could only be possible in particular cases such as those
which I have mentioned; but, even here; it seems scarcely possible
now to work out the problem by using z and 1 for the variables
as originally taken by Diophantus without falling into confusion.
Perhaps, however, in working out the problems before writing them
down as we have them Diophantus may have given the “1” which
stood for a variable some mark by which he could recognise it
and distinguish it from other numbers.

Diophantus will have in his solutions no numbers whatever
except “rational” numbers; and in pursuance of this restriction he
excludes not only surds and imaginary quantities, but also nggative
quantities. Of a negative quantity per se, 7.e. without some positive
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quantity to subtract it from, Diophantus had apparently no con-
ception. Such equations then as lead to surd, imaginary, or
negative roots he regards as useless for his purpose: the solution
is in these cases adivaros, impossible. So we find him (v. 2)
describing the equation 4 =4x+ 20 as dvomos, absurd, because it
would give x=—4. Diophantus makes it his object throughout
to obtain solutions in rational numbers, and we find him frequently
giving, as a preliminary, the conditions which must be satisfied in
order to secure a result rational in his sense of the word. In the
great majority of cases, when Diophantus arrives in the course of
a solution at an equation which would give an irrational result, he
retraces his steps and finds out how his equation has arisen, and
how he may, by altering the previous work, substitute for it
another which shall give a rational result. This gives rise, in
general, to a subsidiary problem the solution of which ensures
a rational result for the problem itself. Though, however, Dio-
phantus has no notation for a surd, and does not admit surd
results, it is scarcely true to say that he makes no use of quadratic
equations which lead to such results. Thus, for example, in V. 30
he solves such an equation so far as to be able to see to what
integers the solution would approximate most nearly.



CHAPTER 1V

DIOPHANTUS METHODS OF SOLUTION

BEFORE I give an account in detail of the different methods
which Diophantus employs for the solution of his problems, so far
as they can be classified, it is worth while to quote some remarks
which Hankel has made in his account of Diophantus’. Hankel,
writing with his usual brilliancy, says in the place referred to, “The
reader will now be desirous to become acquainted with the classes
of indeterminate problems which Diophantus treats of, and with
his methods of solution. As regards the first point, we must observe
that included in the 130 (or so) indeterminate problems, of which
Diophantus treats in his great work, there are over 50 different
classes of problems, strung together on no recognisable principle
of grouping, except that the solution of the earlier problems facili-
tates that of the later. The first Book is confined to determinate
algebraic equations; Books IL to V. contain for the most part
indeterminate problems, in which expressions involving in the first
or second degree two or more variables are to be made squares or
cubes. Lastly, Book VI. is concerned with right-angled triangles
regarded purely arithmetically, in which some linear or quadratic
function of the sides is to be made a square or a cube. That is all
that we can pronounce about this varied series of problems without
exhibiting singly each of the fifty classes. Almost more different
in kind than the problems are their solutions, and we are completely
unable to give an even tolerably exhaustive review of the different
turns which his procedure takes. Of more general comprehensive
methods there is in our author ne trace discoverable: every
question requires a quite special method, which often will not
serve even for the most closely allied problems. It is on that

Y Zur Geschichte der Mathematik in Alterthum wund Mittelalter, Leipzig, 1874,
pp. 164-5. 0
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account difficult for a modern mathematician even after studying
100 Diophantine solutions to solve the 101st problem; and if we
have made the attempt, and after some vain endeavours read
Diophantus’ own solution, we shall be astonished to see how
suddenly he leaves the broad high-road, dashes into a side-path
and with a quick turn reaches the goal, often enough a goal with
reaching which we should not be content; we expected to have
to climb a toilsome path, but to be rewarded at the end by an
extensive view; instead of which our guide leads by narrow,
strange, but smooth ways to a small eminence; he has finished!
He lacks the calm and concentrated energy for a deep plunge
into a single important problem; and in this way the reader also
hurries with inward unrest from problem to problem, as in a
game of riddles, without being able to enjoy the individual one.
Diophantus dazzles more than he delights. He is in a wonderful
measure shrewd, clever, quick-sighted, indefatigable, but does not
penetrate thoroughly or deeply into the root of the matter. As
his problems seem framed in obedience to no obvious scientific
necessity, but often only for the sake of the solution, the solution
itself also lacks completeness and deeper signification. He is a
brilliant performer in the a7# of indeterminate analysis invented by
him, but the science has nevertheless been indebted, at least directly,
to this brilliant genius for few methods, because he was deficient
in the speculative thought which sees in the True more than the
Correct. That is the general impression which I have derived from
a thorough and repeated study of Diophantus’ arithmetic.”

It might be inferred from these remarks of Hankel that
Diophantus’ object was less to teach methods than to obtain a
multitude of mere results. On the other hand Nesselmann
observes! that Diophantus, while using (as he must) specific
numbers for numbers which are “given” or have to be arbitrarily
assumed, always makes it clear how by varying our initial as-
sumptions we can obtain any number of particular solutions of
the problem, showing “that his whole attention is directed to
the explanation of the met/od, to which end numerical examples
only serve as means”; this is proved by his frequently stopping
short, when the method has been made sufficiently clear, and
the remainder of the work is mere straightforward calculation.
The truth seems to be that there is as much in the shape of general

Y Adlgebra der Griechen, pp. 308-9.
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methods to be found in Diophantus as his notation and the nature
of the subject admitted of. On this point I can quote no better
authority than Euler, who says’: “ Diophantus himself, it is true,
gives only the most special solutions of all the questions which he
treats, and he is generally content with indicating numbers which
furnish one single solution. But it must not be supposed that his
method was restricted to these very special solutions. In his
time the use of letters to denote undetermined numbers was not
yet established, and consequently the more general solutions which
we are now enabled to give by means of such notation could not
be expected from him. Nevertheless, the actual methods which he
uses for solving any of his problems are as general as those which
are in use today; nay, we are obliged to admit that there is
hardly any method yet invented in this kind of analysis of which
there are not sufficiently distinct traces to be discovered in Dio-
phantus.”

In his 8th chapter, entitled “ Diophantus’treatment of equations?”
Nesselmann gives an account of Diophantus’ solutions of (1) Deter-
minate, (2) Indeterminate equations, classified according to their
kind. In chapter 9, entitled “Diophantus’ methods of solution?”
he classifies these “ methods ” as follows*: (1) “ The adroit assump-
tion of unknowns,” (2) “Method of reckoning backwards and
auxiliary questions,” (3) “Use of the symbol for the unknown in
different significations,” (4) “Method of Limits,” (5) “Solution by
mere reflection,” (6) “Solution in general expressions,” (7) “Arbi-
trary determinations and assumptions,” (8) “Use of the right-
angled triangle.”

At the end of chapter 8 Nesselmann observes that it is not
his solutions of equations that we have to wonder at, but the art,
amounting to virtuosity, which enabled Diophantus to avoid such
equations as he could not technically solve. We look (says Nessel-
mann) with astonishment at his operations, when he reduces the
most difficult problems by some surprising turn to a quite simple

¥ Novi Commentarii Academiac Petropolitanae, 1756~7, Vol. VL (1761), p. 155= Com-
mentationes arithmeticae collectae (ed. Fuss), 1849, I. p. 193.

? ¢ Diophant’s Behandlung der Gleichungen.”

3 “Diophant’s Auflésungsmethoden.”

4 (1) ““Die geschickte Annahme der Unbekannten,” (2)  Methode der Zuriick-
rechnung und Nebenaufgabe,” (3) ‘Gebrauch des Symbols fir die Unbekannte in
verschiedenen Bedeutungen,” (4) *“ Methode der Grenzen,” (5) *“ Auflésung durch blosse
Reflexion,” (6) *‘ Aufldsung in allgemeinen Ausdriicken,” (7) “ Willkithrliche Bestim-
mungen und Annahmen,” (8) ¢ Gebrauch des rechtwinkligen Dreiecks.”
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equation. Then, when in the gth chapter Nesselmann passes to the
“methods,” he prefaces it by saying: “To give a complete picture
of Diophantus’ methods in all their variety would mean nothing else
than copying his book outright. The individual characteristics of
almost every problem give him occasion to try upon it a peculiar
procedure or found upon it an artifice which cannot be applied to
any other problem....Meanwhile, though it may be impossible to
exhibit all his methods in any short space, yet I will try to describe
some operations which occur more often or are particularly re-
markable for their elegance, and (where possible) to bring out
the underlying scientific principle by a general exposition and by
a suitable grouping of similar cases under common aspects or
characters.” Now the possibility of giving a satisfactory account of
the methods of Diophantus must depend largely upon the meaning
we attach to the word “method.” Nesselmann’s arrangement seems
to me to be faulty inasmuch as (1) he has treated Diophantus’
solutions of equations, which certainly proceeded on fixed rules,
and therefore by “method,” separately from what he calls “methods
of solution,” thereby making it appear as though he did not
look upon the “treatment of equations” as “methods”; (2) the
classification of the “Methods of solution” seems unsatisfactory.
Some of the latter can hardly be said to be methods of solution at
all; thus thethird, “ Use of the symbol for the unknown in different
significations,” might be more justly described as a “hindrance to
the solution”; it is an inconvenience to which Diophantus was
subjected owing to the want of notation. -Indeed, on the as-
sumption of the eight “methods,” as Nesselmann describes them,
it is really not surprising that no complete account of them
could be given without copying the whole book. To take the
first, “the adroit assumption of unknowns.” Supposing that a
number of essentially different problems are proposed, the differences
make a different choice of an unknown in each case absolutely
necessary. That being so, how could a rule be given for all cases?
The best that can be done is to give a number of typical instances.
Precisely the same remark applies to “methods” (2), (5), (6), (7).
The case of (4), “ Method of Limits,” is different; here we have
a “method” in the true sense of the term, 7e. in the sense of an
instrument for solution. And accordingly in this case the method
can be exhibited, as I hope to show later on; (8) also deserves
to some extent the name of a “method.”
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In one particular case, Diophantus formally states a method or
rule; this is his rule for solving what he calls a “ double-equation,”
and will be found in IL 11, where such an equation appears for the
first time. Apart from this, we do not find in Diophantus’ work
statements of method put generally as book-work to be applied to
examples. Thus we do not find the separate rules and limitations
for the solution of different kinds of equations systematically
arranged, but we have to seek them out laboriously from the
whole of his work, gathering scattered indications here and there,
and to formulate them in the best way that we can.

I shall now attempt to give a short account of those methods
running through Diophantus which admit of general statement.
For the reasons which I have stated, my arrangement will be
different from that of Nesselmann ; I shall omit some of the heads
in his classification of “methods of solution”; and, in accordance
with his remark that these “methods” can only be adequately
described by a transcription of the entire work, I shall leave them
to be gathered from a perusal of my reproduction of Diophantus’
book.

I shall begin my account with

I. DIOPHANTUS TREATMENT OF EQUATIONS.

This subject falls naturally into two divisions: (A) Determinate
equations of different degrees, (B) Indeterminate equations.

(A) Determinate equations.

Diophantus was able without difficulty to solve determinate
equations of the first and second degrees; of a cubic equation we
find in his Arithmetica only one example, and that is a very
special case. The solution of simple equations we may pass over;
we have then to consider Diophantus’ methods of solution in the
case of (1) Pure equations, (2) Adfected, or mixed, guadratics.

(1) Pure determinate equations.

By pure equations I mean those equations which contain only
one power of the unknown, whatever the degree. The solution is
effected in the same way whatever the exponent of the term in the
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unknown; and Diophantus treats pure equations of any degree
as if they were simple equations of the first degree.

He gives a general rule for this case without regard to the
degree!: “If a problem leads to an equation in which any terms
are equal to the same terms but have different coefficients, we must
take like from like on both sides, until we get one term equal to
one term. But, if there are on one side or on both sides any negative
terms, the deficient terms must be added on both sides until all the
terms on both sides are positive. Then we must take like from like
until one term is left on each side.” After these operations have
been performed, the equation is reduced to the form Ax™=25 and
is considered solved. The cases which occur in Diophantus are
cases in which the value of » is found to be a rational number,
integral or fractional. Diophantus only recognises one value of x
which satisfies this equation; thus, if » is even, he gives only the
positive value, excluding a negative value as “impossible.” In the
same way, when an equation can be reduced in degree by dividing
throughout by any power of x, the possible values, x=o0, thus
arising are not taken into account. Thus an equation of the form
2*= ax, which is of common occurrence in the earlier part of the
book, is taken to be merely equivalent to the simple equation x=a.

It may be observed that the greater proportion of the problems
in Book I. are such that more than one unknown quantity is sought.
Now, when there are two unknowns and two conditions, both
unknowns can easily be expressed in terms of one symbol. But,
when there are three or four quantities to be found, this reduction
is much more difficult, and Diophantus shows great adroitness in
effecting it: the ultimate result being that it is only necessary
to solve a simple equation with one unknown quantity.

(2) Mixed quadratic equations.

After the remarks in Def. 11 upon the reduction of equations
until we have one term equal to another term, Diophantus
adds®*: “But we will show you afterwards how, in the case also
when two terms are left equal to a single term, such an equation
can be solved.” That is to say, he promises to explain the
solution of a mixed quadratic equation. In the Arithmetica,
as we possess the book, this promise is not fulfilled. The first

I Def. 11.
2 forepor 8¢ oot Seifoper xai w@s So eldir lowv évl xaraeipférTwr T TowiTOr NbeTas.
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indications we have on the subject are a number of cases in which
the equation is given, and the solution written down, or stated to
be rational, without any work being shown. Thus

(Iv. 22) #*=4x — 4, therefore x=2;
(Iv. 31) 3252 =32+ 18, therefore x = #1& or f;
(VL. 6) 842+ 7x =7, whence x=1;
(VL. 7) 842 — 7x=7, hence x=1};
(VL. 9) 6302% — 73x =06, therefore x = ;
and (VL 8) 6302+ 732 =6, and x is rational.

These examples, though proving that Diophantus had somehow
arrived at the result, are not in themselves sufficient to show that
he was necessarily acquainted with a regular method for the
solution of quadratics; these solutions might (though their variety
makes it somewhat unlikely) have been obtained by mere #rial.
That, however, Diophantus’ solutions of mixed quadratics were not
merely empirical is shown by instances in v. 30. In this problem
he shows that he could approximate to the root in cases where it is
not “rational.” As this is an important point, I give the substance
of the passage in question: “This is not generally possible unless
we contrive to make x>} (2*—60) and <} (2*—60). Let then
2" — 60 be > 5z, but 2 —60< 82. Since then 2 — 60 > 57, let 60 be
added to both sides, so that 2? > 52 + 60, or #* = 5x + some number
> 60; therefore x must not be less than 11.” In like manner
Diophantus concludes that “#? = 8z + some number less than 60;
therefore # must be found to be not greater than 12.”

Now, solving for the positive roots of these two equations, we
have i

%>} (5+4/265) and x < 4+4/76,

or x> 106394... and < 12°7177....

It is clear that x may be < 11 or >12, and therefore Dio-
phantus’ limits are not strictly accurate. As however it was
doubtless his object to find znzegral limits, the limits 11 and 12
are those which are obviously adapted for his purpose, and are
a fortiori safe.

In the above equations the other roots obtained by prefixing
the negative sign to the radical are negative and therefore would
be of no use to Diophantus, In other cases of the kind occurring
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in Book V. the equations have both roots positive, and we have to
consider why Diophantus took no account of the smaller roots in
those cases.
We will take first the equations in V. 10 where the inequalities
to be satisfied are
72, > R17 eSS 7R XSRS ANTItE Jt ST (1).
72 R O G S e o (2).
Now, if a, 8 be the roots of the equation
2 —px +g=0 (p, g both positive),
and if a > B, then

(a) in order that 2% — pz + ¢ may be >0
we must have r>a or <8,
and (0) in order that 2 — pr + ¢ may be <o

we must have r <a and > 8.
(1) The roots of the equation
1722 —72x 4+ 17 =0

are 36+ 007 . ; that is, 6773-.. and 4"26'";
17 17
and, in order that I7xz — 722+ 17 may be <o, we must have

1260
17

,1r<67773 but > ———

(2) The roots of the equation
lgx’-— 72x+19=0

66'577... erd 5'422...;

19 19
and, in order that 194 — 72 4+ 19 may be >0, we must have
66'577... or < S422-:

19 19

Diophantus says that » must not be greater than &7 or less than
¢¢. These are again doubtless intended to be a fortior: limits;
but §§ should have been §%,and the more correct way of stating the
case would be to say that, if » is not greater than §} and not less
than §}, the given conditions are a forziori satisfied.

Now consider what alternative (if any) could be obtained, on
Diophantus’ principles, if we used the lesser positive roots of the

are 36—1_‘% that is,

x>
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equations. If; like Diophantus, we were to take a fortiori limits,
we should have to say

x< {5 but >,
which is of course an impossibility. Therefore the smaller roots
are here useless from his point of view.

This is, however, not so in the case of another pair of in-
equalities, used later in V. 30 for finding an auxiliary #, namely

2?4+ 60> 22z,
224+ 60< 242
The roots of the equation
2 —22¢x+60=0
are 11 + V61 ; that is, 1881... and 3'18...;
and the roots of the equation #?— 244 +60=0
are 12 # V84; that is, 21'16... and 2°83....
In order therefore to satisfy the above inequalities we must have
2 > 8181 o<
and <2116 ... but > 2:83.

Diophantus, taking a fortiori integral limits furnished by the
greater roots, says that x must not be less than 19 but must be
less than 21. But he could also have obtained from the smaller
roots an integral value of x satisfying the necessary conditions,
namely the value = 3; and this would have had the advantage
of giving a smaller value for the auxiliary » than that actually
taken, namely 20 Accordingly the question has been raised?
whether we have not here, perhaps, a valid reason for believing
that Diophantus only knew of the existence of roots obtained by
using the positive sign with the radical, and was unaware of the
solution obtained by using the negative sign. But in truth we
can derive no certain knowledge on this point from Diophantus’
treatment of the particular equations in question. Thus, eg, if he
chose to use the first of the two equations

722 > 17284 17,
72x% < 192% + 19,
for the purpose of obtaining an upper limit on/y, and the second

! This is remarked by Loria (Le sciense esatte dell antica Grecia, V. p. 128).
But in fact, whether we take 20 or 3 as the value of the auxiliary unknown, we get
the same value for the original x of the problem. For the original x has to be found
from x%~-60=(x—m)? where m is the auxiliary x; and we obtain x=11} whether we
put 22— 6o=(xr—20)? or x%-6o=(x~3)%

2 Loria, 0p. cit. p. 129.
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for the purpose of obtaining a lower limit ony, he could only use
the values obtained by using the positive sign. Similarly, if, with
the equations

2% 4 60 > 22z,

2%+ 60 < 247,
he chose to use the first in order to find a lower limit onfy, and
the second in order to find an upper limit ozly, it was not open to
him to use the values corresponding to the negative sign?,

For my part, I find it difficult or impossible to believe that
Diophantus was unaware of the existence of two real roots in
such cases. The numerical solution of quadratic equations by the
Greeks immediately followed, if it did not precede, their geometrical
solution. We find the geometrical equivalent of the solution of
a quadratic assumed as early as the fifth century B.C,, namely by
Hippocrates of Chios in his Quadrature of lunes®, the algebraic form
of the particular equation being 2°+4/}.ar=a®. The complete
geometrical solution was given by Euclid in VI. 27-29: and the
construction of VI. 28 corresponds in fact to the meggative sign
before the radical in the case of the particular equation there
solved, while a quite obvious and slight variation of the con-
struction would give the solution corresponding to the positive sign.
In VI 29 the solution corresponds to the positive sign before the
radical; in the case of the equation there dealt with the other sign
would not give a “real” solution®. It is true that we do not find
the negative sign taken in Heron any more than in Diophantus,
though we find Heron* stating an approximate solution of the
equation

# (14 - x) = 6720/144,
without showing how he atrived at it; z is, he says, approximately
equal to 84. It is clear however that Heron already possessed
a scientific method of solution. Again, the author of the so-called
Geometry of Heron® practically states the solution of the equation

H2+3R2r="212

x_~/(154x212+841)-—29
11 ’

in the form

! Enestrom in Bibliotheca Mathematica 1%g, 1908-9, Pp. 71-2.

? Simplicius, Comment. in Aristot. Phys., ed. Diels, p. 64, 18; Rudio, Der Berickt
des Simplicius iiber die Quadraturen des Antiphon und des Hippokrates, 1907, p. 58, 8-11.

3 The Thirteen Books of Euclid’s Elements, Cambridge, 1908, Vol. II. pp. 257—-267.

4 Heron, Metrica, ed. Schine, pp. 148-151. The text has 8 as the approximate solu-
tion, but the correction is easy, as the inference immediately drawn is that 14 - x=5}.

6 Heron, ed. Hultsch, p- 133, 10-23. See M. Cantor, Geschichte der Math. 13, p. 405.
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showing pretty clearly the rule followed after the equation had
been written in the form

121224+ 638r =212 X 154.

We cannot credit Diophantus with less than a similar uniform
method; and, if he did not trouble to give two roots where both
were real, this seems quite explicable when it is remembered that he
did not write a text-book of algebra, and that his object through-
out is to obtain a single solution of his problems, not to multiply
solutions or to show how many car be found in each case.

In solving such an equation as

ax*—bxr+c=0,
it is our modern practice to divide out by a in order to make the
first term a square. It does not appear that Diophantus divided
out by a; rather he multiplied by @ so as to bring the equation
into the form
@ — abx+ ac=0;
then, solving, he found
axr=3%b% v/ (38— ac),
and wrote the solution in the form
LA ENGE—a)
a b

wherein his method corresponds to that of the Pseudo-Heron above
referred to.

From the rule given in Def. 11 for removing by means of addition
any negative terms on either side of an equation and taking equals
from equals (operations called by the Arabians afjebr and almutea-
bala) it is clear that, as a preliminary to solution, Diophantus so
arranged his equation that all the terms were positive. Thus,
from his point of view, there are three cases of mixed quadratic
equations.

Case 1. Form ma*+ pxr=gq ; the root is
=2+ @ +my)
m b
according to Diophantus. An instance is afforded by vI. 6. Dio-
phantus namely arrives at the equation 62?4+ 3x =7, which, if it is
to be of any service to his solution, should give a rational value
of x; whereupon he says “the square of half the coefficient® of »

1 For “coefficient” Diophantus simply uses wAffos, multitude or number; thus
“number of dptfuot” = coeff. of x. The absolute term is described as the ‘¢ uuits.”
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together with the product of the absolute term and the coefficient
of 22 must be a square number; but it is not,” 7. 12*+ mg, or in
this case (§)*+ 42, must be a square in order that the root may be
rational, which in this case it is not.

Case 2. Form mx*=px +¢. Diophantus takes
Ly rNGr )

m
An example is Iv. 39, where 24*>6x+ 18. Diophantus says:
“To solve this take the square of half the coefficient of x, z.e. 9, and
the product of the absolute term and the coefficient of 2, ze. 36.
Adding, we have 45, the square root! of which is not*< 7... Add
half the coefficient of x, [and divide by the coefficient of +*]; whence
xis not <5.” Here the form of the root is given completely; and
the whole operation of finding it is revealed. Cf. 1v. 31, where
Diophantus remarks that the equation 542= 3+ + 18 “is not rational.
But 5, the coefficient of 4% is a square plus 1, and it is necessary
that this coefficient multiplied by the 18 units and then added to
the square of half the coefficient of x, namely 3, that is to say 2%,
shall make a square.”

Case 3. Form mz*+ g =px. Diophantus’ root is
12 +NQAP = mg)

m
Cf. in v. 10 the equation already mentioned, 172%+ 17 < 72%.
Diophantus says: “ Multiply half the coefficient of x into itself and
we have 1296; subtract the product of the coefficient of 22 and the
absolute term, or 289. The remainder is 1007, the square root of
which is not?® > 31. - Add half the coefficient of #, and the result is
not >67. Divide by the coefficient of #? and x is not >67/17.”
Here again we have the complete solution given. Cf. VI. 22, where,
having arrived at the equation 172x=3364*+ 24, Diophantus
remarks that “this is not always possible, unless half the coefficient
of x multiplied into itself, mézus the product of the coefficient of x*
and the units, makes a square.”
For the purpose of comparison with Diophantus’ solutions of
quadratic equations we may refer to a few of his solutions of
1 The “square root” is with Diophantus w\evpd, or ‘side.”
2 7, though not accurate, is clearly the nearest integral limit which will serve the

purpose.
2 As before, the nearest infegral limit.

H. D. 5



66 INTRODUCTION

(3) Simultaneous equations involving quadratics.
Under this heading come the pairs of equations

£ +E:" :Zz}, (1. 27)
é:;’:;“} (. 28)
E—g):? } (1. 30.)

I use Greek letters to distinguish the numbers which the
problem requires us to find from the one unknown which Dio-
phantus uses and which I shall call z.

In the first two of the above problems, he chooses his x thus.
Let, he says,

E—n=22 (E>9)
Then it follows, by addition and subtraction, that
E=a+zx n=a-—=x
Consequently, in I. 27,
Ey=(@+x)(a—x)=a*-2*=1B,
and z is found from this “pure” quadratic equation.

If we eliminate £ from the original equations, we have

n*—2an+ B=o0,

which we should solve by completing the square (2 — )% whence
(tl = "I)a =a*— B)

which is Diophantus’ ultimate equation with & — 7 for z.

Thus Diophantus’ method corresponds here again to the ordi-
nary method of solving a mixed quadratic, by which we make it
into a pure quadratic with a different .

In L. 30 Diophantus puts £ + n= 2z, and the solution proceeds
in the same way as in L 27.

In 1. 28 the resulting equation in x is

Eta=(@+af+(@—2=2(++)=5.

(4) Cubic equation.

There is no ground for supposing that Diophantus was acquainted
with the algebraical solution of a cubic equation. Itis true that there
is one cubic equation to be found in the A#éithmetica, but it is only
a very particular case. In VI. 17 the problem leads to the equation

Br2x+3=22+3r-322—1,
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and Diophantus says simply “whence z is found to be 4.” All
that can be said of this is that, if we write the equation in true
Diophantine fashion, so that all the terms are positive,
o rrr=42°+4.
This equation being clearly equivalent to
T+ 1)=4(+1),

Diophantus no doubt detected the presence of the common factor
on both sides of the equation. The result of dividing by it
is x =4, which is Diophantus’ solution. Of the other two roots
x=14/(— 1) no account is taken, for the reason stated above.

It is not possible to judge from this example how far Dio-
phantus was acquainted with the solution of equations of a degree
higher than the second.

I pass now to the second general division of equations.

(B) Indeterminate equations.

As I have already stated, Diophantus does not, in his
Arithmetica as we have it, treat of indeterminate equations of the
first degree. Those examples in Book I which would lead to such
equations are, by the arbitrary assumption of a specific value for
one of the required numbers, converted into determinate equations.
Nor is it likely that indeterminate equations of the first degree
were treated of in the lost Books. For, as Nesselmann observes,
while with indeterminate quadratic equations the object is to obtain
a rational result, the whole point in solving indeterminate simple
equations is to obtain a result in énfegra/ numbers. But Diophantus
does not exclude fractional solutions, and he has therefore only to
see that his results are positive, which is of course easy. Inde-
terminate equations of the first degree would therefore, from
Diophantus’ point of view, have no particular significance. We
take therefore, as our first division, indeterminate equations of
the second degree.

(@) Indeterminate equations of the second degree.

The form in which these equations occur in Diophantus is
invariably this: one or two (but never more) functions of the
unknown quantity of the form Aa*+Bxr+ C or simpler forms
are to be made rational square numbers by finding a suitable
value for . Thus the most general case is that of solving one or
two equations of the form 4Ax* 4+ Br+ C=3~

5—2
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(1) Single equation.

The single equation takes special form5 when one or more of
the coefficients vanish or satisfy certain conditions. It will be well
to give in order the different forms as they can be identified in
Diophantus, premising that for “=3?” Diophantus simply uses the
formula {oov TeTpaydve, “is equal to a square,” or woiei TeTpdywvov,
“makes a square.”

1. Equations which can always be solved rationally. This is
the case when A4 or C or both vanish.

Form Bxr=3% Diophantus puts for »* any arbitrary square
number, say % Then x=m?*B.

Ex. IIL 5: 2x =3 3* is assumed to be 16, and » = 8.

Form Bx+ C=3* Diophantus puts for »* any square #? and
z=(m*— C)/B. He admits fractional values of #, only taking
care that they are “rational,” Ze. rational and positive.

Ex. IIL 6: 62+ 1 =)= 121, say, and x= 20.

Form Ax*+ Bx =3 Diophantus substitutes for y any multiple
2
of z, as %x; whence Ax+ B = %x, the factor x disappearing and
Bn?
m? — An*’
Exx. IL 21: 42"+ 3r =3*=(3%), say, and xr=4§.
IL 33: 16224 72 =3 =(5x), say, and x=1J.

the root x = o0 being neglected as usual. Thus r=

2.. Equations which can only be rationally solved if certain
conditions are fulfilled.

The cases occurring in Diophantus are the following.

Form Ax*+ C=3 This can be rationally solved according to
Diophantus

(«) When 4 is positive and a square, say 2%
Thus a%2®+ C=32 In this case 3* is put = (ax + m)*;

therefore @+ C=(ax + mp,
T

and r=4% C—m 4
2ma

(m and the doubtful sign being always assumed so as to give »
a positive value).

(B) When C is positive and a square number, say
Thus Ax*+ ¢>=3°. Here Diophantus puts y = (mx t¢);
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therefore A+ &= (mx + o),
2mc
and x=iA—m"

(y) When one solution. is known, any number of other
solutions can be found. This is enunciated in the Lemma to VL 15
thus, though only for the case in which C is negative: “Given two
numbers, if, when one is multiplied by some square and the other
is subtracted from the product, the result is a square, then another
square also can be found, greater than the aforesaid square which
has the same property.” It is curious that Diophantus does not
give a general enunciation of this proposition, inasmuch as not
only is it applicable to the cases + A2*+ C=3? but also to the
general form A2*+ Br+ C=3

Diophantus’ method of finding other greater values of.rsatlsfy-
ing the equation 4z*— C=3* when one such value is known is as
follows.

Suppose that z, is the value already known and that ¢ is the
corresponding value of y.

Put xr=x,+ £ in the original expression, and equate it to
(g — #£)}, where % is some integer.

Since A +EP-C=(g—H,
it follows (because by hypothesis 41,* — C'=¢*) that

2 (A + hg) = B(E = A),

whence E= 2(4x ;'éq)
2 (Ax + k)
and r=x+ Tifq :

In the second Lemma to V1. 12 Diophantus does prove that the
equation Ax*+ C=3* has an infinite number of solutions when
A+ C is a square, ze. in the particular case where the value x=1
satisfies the equation. But he does not always bear this in mind;
for in IIL 10 the equation 522*+ 12 =3? is regarded as impossible of
solution although 52 + 12 =64, a square, and a raticnal solution is
therefore possible. Again in IIL 12 the equation 2662 — 10 =3? is
regarded as impossible though x = 1 satisfies it.

The method used by Diophantus in the second Lemma to
VI. 12 is like that of the Lemma to VL 15.

Suppose that 4 + C=¢4"

Put 1 + £ for x in the original expression 42*+ C, and equate it
to (g — ££)%, where £ is some integer.
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Thus A+ &P+ C=(g—kER,
and it follows that 2£(4 + k9) =& (# — 4),
so that E= e +:q)

2(A4 +#g)
and + Y B

It is of course necessary to choose £ such that £ > 4.

It is clear that, if » = o satisfies the equation, C is a square, and
therefore this case (y) includes the previous case (8).

It is to be observed that in VI. 14 Diophantus says that a rational
solution of the equation

At — F =y

is impossible unless A is the sum of two squares.

[In fact, if #=p/q satisfies the equation, and Ax* - 2= £,
we have Ap =g + kg,

2 k 2
. -+
? ? ]
Lastly, we have to consider
Form Ax*+ Bx+ C=y"

This equation can be reduced by means of a change of variable
to the preceding form wanting the second term. For, if we put
xr=2z— 5 , the transformation gives

2
Az’+4»ACA L =i

Diophantus, however, treats ‘this form of the equation quite
separately from the other and less fully. According to him the
rational solution is only possible in the following cases.

(@) When 4 is positive and a square, or the equation is

@2 + Br+ C=7~
Diophantus then puts y* = (ax — #2)’, whence
m—C
= m 3 (EXX. II. 20, 22 etc.)
(B) When C is positive and a square, or the equation is
Ar*+ Bxr+ ="
Diophantus puts »? = (¢ — mx)’, whence
i _2mc+ B
T

(Exx. 1v. 8, g etc.)
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(y) When }B? - AC is positive and a square number. Dio-
phantus never expressly enunciates the possibility of this case;
but it occurs, as it were unawares, in Iv. 31. In that problem

3r+18—2?
is to be made a square. To solve this Diophantus assumes
3r+ 18— 2= 4x ’)

which leads to the quadratic 3z + 18 — 52 =0; but “the equation
is not rational” Accordingly the assumption 4+* will not do;
“and we must find a square [to replace 4] such that 18 times
(this square + 1) + (3)* may be a square.” Diophantus then solves
the auxiliary equation 18(m?+ 1)+ %= finding m=18. He
then assumes 3z + 18 — 2*=(18)*+?, which gives 325242 — 3r— 18 =0,
“and x = 1%, that is £

! With this solution should be compared the much simpler solution of this case given
by Euler (4/gebra, tr. Hewlett, 1840, Part 11. Arts. 50-53), depending on the separation
of the quadratic expression into factors. (Curiously enough Diophantus does not separate
quadratic expressions into their factors except in one case, VI. 19, where however his
purpose is quite different : he has made the sum of three sides of a right-angled triangle
423+ 6x + 2, which has to be a cube, and, in order to simplify, he divides throughout by
x+ 1, which leaves 4x+2 to be made a cube.)

Since 82— AC is a square, the roots of the quadratic 4x*+ Bx+ C=o are real, and
the expression has two real linear factors. Take the particular case now in question,
where Diophantus actually arrives at 3x+ 18— 2? as the result of multiplying 6 —x and
3+, but makes no use of the factors.

We have 3x+18-2%=(6-x) (3 +x).
Assume then 6~-x)(3+x) =§ (6 - %)%
and we have P6-x)=¢*3+x),
228237
Fre

where g, ¢ may be any numbers subject to the condition that 2p?>¢3. If g2=9, ¢*=16,
we have Diophantus’ solution x=E.

In general, if Ax3+Bx+ C=(f+gx) (h+4kx),
we can put (f+gx) (h+kx) =$ (f+ex),
whence Ph+ k)= f+gx),

ey
and x= y7 gl

This case, says Euler, leads to a fourth case in which 4x*+ Bx+ C=3? can be solved,
though neither 4 nor C is a square, and though B - 44C is not a square either. The
fourth case is that in which 4x*+ Bx + C is the sum of two parts, one of which is a square
and the other is the product of two factors linear in . For suppose

A2+ Bx+C=22+ XY,
where Z=dx+e, X=fx+g V=hx+h
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It is worth observing that from this example of Diophantus we

can deduce the reduction of this general case to the form
Ax*+ C=p?

wanting the middle term.

Assume, with Diophantus, that Ax*+ Bx + C = m2x*: therefore
by solution we have

_—1B+ ViB*— AC+ Cmz
A—m?

and x is rational provided that }5?*— AC+ Cw? is a square. This
condition can be fulfilled if 1B~ AC is a square, by the pre-

. 2
We can then put Z’+XY=(Z+§X>,
eas
whence Y= 2224.%,)(,
7 q
or . hx+b=z§(zix+z)+§:(fx+g),
that is, x(PPf+2p9d - g%k) = kg® - 2pge - p*g.
Ex. 1. Equation 222 - 1=
Put 22t = 1=a2+ (x4 1) (x-1)= {x+1j(x+r)}
Therefore ¥ - x—'zzx+ (x+1),
and T x(Prapg-)= -+

As #* is alone found in our equation, we can take either the positive or negative sign
and we may put

pe R
Prapg-¢°
Ex. 2. Equation 2a%+2=32
Here we put 2w+ e=g+2{x+1)(x-1)
2
Equating this to {2 + ? (x+ 1)} ,
2
we have 2(x—x)=4§+§,(x+ 1),
or #(22=29")= - (24’ + 4p9 + 1),
2 2
Al S alaatty
-7
It is to be observed that this method enables us to solve the equation
Axt— 2=y

whenever it can be solved rationally, 7.e. whenever 4 is the sum of two squares (@2+¢2,
say). For then .
Ax?— =%+ (ex —¢) (ex+¢).

In cases not covered by any of the above rules our only plan is to try to discover one
solution empirically. If one solution is thus found, we can find any number of others; if
we cannot discover such a solution by trial (even after reducing the equation to the
simplest form 4'x"2+ C=y'%), recourse must be had to the method of continued fractions
elaborated by Lagrange (cf. Oeuwe:, 11. pp- 377-535 and pp. 655—726 ; additions to
Euler’s Algebra).
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ceding case. If 1B*—AC is not a square, we have to solve
(putting, for brevity, D for } B? — AC) the equation

D+ Cm? = p2,
and the reduction is effected.

(2) Double-equation.

By the name “double-equation” Diophantus denotes the pro-
blem of finding one value of the unknown quantity which will make
two different functions of it simultaneously rational square numbers.
The Greek term for the “double-equation” occurs variously as &irhoi-
aots, dum\i lobétys or Sem\f {owows. We have then to solve the
equations

mx*+oaxr+a=’

net+ Br+ b= w’}
in rational numbers. The necessary preliminary condition is that
each of the two expressions can severally be made squares. This
is always possible when the first term (in 2%) is wanting. This is
the simplest case, and we shall accordingly take it first.

1. Double-equation of the first degree.

Diophantus has one general method of solving the equations
ar+a=1u }
Br+b=w?|’
taking slightly different forms according to the nature of the
coefficients.

(a) First method of solution of
5 ar+a= u”}
Br+b=u?]"
This method depends upon the identity
B+l -E(2-p) =29

If the difference between the two expressions in x can be separated
into two factors p, ¢, the expressions themselves are equated
to {3(2 + ¢)}* respectively. Diophantus himself (I 11) states his
rule thus.

- “Observing the difference [between the two expressions], seek
two numbers such that their product is equal to this difference;
then equate either the square of half the difference of the two
factors to the lesser of the expressions or the square of half the
sum to the greater.”
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We will take the general case and investigate to what particular
classes of cases the method is applicable, from Diophantus’ point
of view, remembering that his cases are such that the final quadratic
equation in x always reduces to a simple equation.

Take the equations

ax+a=1u*
Bx+b= w’} h
Subtracting, we have
(@a—B)x+(a~b)=u*—w>

We have then to separate (a—B)x + (e — &) into two factors;
let these be p, {(a— B)x+(a— 6)}/p.

We write accordingly

_(a-—/S)x:I-a—l_/
utw= - :
uFw=p.

Thus u":ax+a=i{(_a_—%+p}ﬁ;
therefore {(a=B)yxr+a—b+p =42 (ax+a),

or (a—pya*+2x{(a—B)(a—b+7) -2} +(a— b+ - 4ap'=0,
thatis, (a—pg)#*+22{(a-p)(a~8)—7'(a+B)}
+@—by -2 (@+b)+p'=o.
Now, in order that this equation may reduce to a simple
equation, either
(1) The coefficient of 2* must vanish, so that
a=p,

or (2) The absolute term must vanish, that is,
=2t @+ b)+(a—b)=o,

or (#*—(@+8) = 4ab,

so that @b must be a square number.

Therefore either @ and & are both squares, in which case we
may substitute ¢ and &2 for them respectively, ¢ being then equal
to ¢ + 4, or the ratio of  to & is the ratio of a square to a square.

With respect to (1) we observe that on one condition it is not
necessary that a — 8 should vanish, ze. provided we can, before
solving the equations, make the coefficients of x the same in both
expressions by multiplying either equation or both equations by
some square number, an operation which does not affect the
problem, since a square multiplied by a square is still a square.
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In other words, it is only necessary that the ratio of a to 8 should
be the ratio of a square to a squarel.

Thus, if a/8=m*n* or an* =B the equations can be solved
by multiplying them respectively by #? and #2; we can in fact
solve the equations

an’x +a=ut
an’x + b= w’} |
like the equations
ax+a=u"
ar+b= w”} ;
in an infinite number of ways.
Again, the equations under (2)

oax +c =
Bx +4d%= ‘Zlﬂ}

can be solved in two different ways according as we write them in
this form or in the form

ad’y + Cd?=u"

Bz +ccdr = 'w’”} ;
obtained by multiplying them respectively by &7 ¢ in order that
the absolute terms may be equal.

I shall now give those of the possible cases which we find solved

in Diophantus’ own work. These are equations

(1) of the form

2(

am?x +a =12
an’r+ b =w

1 Diophautus actually states this condition in the solution of 1v. 32 where, on arriving
at the equations
8—x=2?
8- 3x=w2} ’
he says : “* And this is not rational because the coefficients of x have not to one another
the ratio which a square number has to a square number.” p
Similarly in the second solution of 111. 15 he states the same condition along with an
alternative condition, namely that @ has to & the ratio of a square to a square, which is
the second condition arrived at under (z) above. On obtaining the equations
4x+3=u*
65x+ 53 =u? } g
Diophantus observes * But, since the coefficients in one expression are respectively greater
than those in the other, neither have they (in either case) the ratio which a square number
has to a square number, the hypothesis which we took is useless.”
Cf. also 1v. 39 where he says that the equations
8x+4= u?}
6x+4=2"

are possible of solution because there is a square number of units in each expression.
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a case which includes the more common one where the coefficients
of x in both are equal;
(2) of the form
ax + =)
Br+d*= 'w*j 1
solved in two different ways according as they are written in this
form or in the alternative form :
ad’x + d? = "
Bex+ cdr = w'?} '

General solution of Form (1) or
an’xy + a = u*
antx+ b = w’} i
Multiply by #% m* respectively, and we have to solve the
equations
am*n’x + an® = u'*
an*n’x + bmt= w’"‘} i

The difference is an®—bém?; suppose this separated into two
factors 2, ¢. '

Let Y W tw =2,
WIw=g;
therefore W= (p+qp, wr=31(p—9»
and am’n’x+ant=1%1(p+q),
or am*n’x + bm* =} (p—g)>

Either equation gives the same value of x, and

PR T )
am*n? 4

since pg = an® — bm*.

Any factors p, ¢ may be chosen provided that the resulting
value of x is positive. '

Ex. from Diophantus :

65 — 6r= u?

6? o }; @v. 32.)
therefore . 260 —24x=u"

65 —2qr=2|"

The difference =195 =15 . 13, say;
therefore (15— 13)*=65— 24x; that is, 24x=064, and x=§.
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General solution (first method) of Form (2), or

ax + & =u"
Br+di=w" ’} ¥
In order to solve by this method, we multiply by &2 ¢
respectively and write
oad’x + d? =1? }
Bex +d=w)’
# being supposed to be the greater.
The difference = (ad?—Bc®)x. Let the factors of this be pz, g.
Therefore w=1(pr+9)
w' =} (pr—gq).
Thus x is found from the equation
ad’x +2dt =} (pr + g)-
This equation gives
P22+ 2x(pg — 2ad?) + ¢* — 4c2d* =0,
or, since pg = (ad?— Bc?), y
2= 2x (ad?*+ BE) + ¢*— 4c2d*=o.

In order that this may reduce to a simple equation, as Dio-
phantus requires, the absolute term must vanish,
or g* = 423,
and g =2dd.

Thus our method in this case furnishes us with only oze solution
of the double-equation, ¢ being restricted to the value 2¢d, and the
solution is

oo 2+ Be') _ 8cd* (ad” + Be?)
7 (ad® - By

Ex. from Diophantus. This method is only used in one par-
ticular case (Iv. 39), where ¢*=d? as the equations originally stand,
the equations being

8xr+4= u’}
6x+4 =)’
The difference is 2, and ¢ is necessarily taken to be 24/4, or 4;
the factors are therefore }x, 4.
Therefore 8r+4=3@GFr+4)
and =21

General solution (second method) of Form (2) or
ax + =t
Brtdi=w|’
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The difference =(a — B) x + (¢ — d?).

Let the factors of this be p, {(a — 8) z + 2 — 2%} /p.

Then, as before proved (p. 74), p must be equal to (¢ + &).

Therefore the factors are
a—-f
c+d

1(a—pB

r+cFd, ctad,
and we have finally

2
xr+cTF d+cid>

a— By c(a—p)
Therefore (;_f) 244 {- Bt a} =0,
which equation gives two possible values for . Thus in this case
we can find by our method #wo values of #, since one of the factors
p may be either (c+4) or (¢ —4).
Ex. from Diophantus. To solve the equations

on+9=u’}. (1L, 15.)

5x+ 4 =w?

The difference is here 5x + 5, and Diophantus chooses as the

factors 5, #+ 1. This case therefore corresponds to the value
c+dof p. The solution is given by

(3 + 3)*= 102 + 9, whence » = 28.

The other value, c — &, of g is in this case excluded, because it
would lead to a negative value of x.

The possibility of deriving any number of solutions of a double-
equation when one solution is known does not seem to have been
noticed by Diophantus, though he uses the principle in certain
cases of the single equation (see above, pp. 69, 70). Fermat was the
first, apparently, to discover that this might always be done, if one
value 2 of x were known, by substituting » + a for # in the equa-
tions. By this means it is possible to find a positive solution, even
if @ is negative, by successive applications of the principle.

But, nevertheless, Diophantus had certain peculiar artifices by
which he could arrive at a second value. One of these artifices
(which is made necessary in one case by the unsuitableness of the
value of x found by the ordinary method) gives a different way of
solving a double-equation from that which has been explained, and
is used only in one special case (IV. 39).
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If we multiply by ¢, we must make
3’ + 12y + 9 = a square,
where y must be < 2.
Diophantus assumes
34+ 127 +9=(3 —my),
_6m+12
=
and the value of 72 is then taken such as to make y < 2.
It is in a note on this problem that Bachet shows that the
double-equation

whence

ax 4+ a =’
Br+b= 'wz}

can be rationally solved by a similar method provided that the

coefficients satisfy either of two conditions, although none of the

coefficients are squares and neither of the ratios a: 8 and @: 4 is

equal to the ratio of a square toa square. Bachet’s conditions are:

(1) That, when the difference between the two expressions
is multiplied or divided by a suitably-chosen number, and the
expression thus obtained is subtracted from the smaller of the
original expressions, the result is a square number, or

(2) That, when the difference between the two expressions
is multiplied or divided by a suitably-chosen number, and the
smaller of the two original expressions is subtracted from the
expression obtained by the said multiplication or division, the
result is a number bearing to the multiplier or divisor the ratio
of a square to a squarel

1 Bachet of course does not solve equations in general expressions (his notation does
not admit of this), but illustrates his conditions by equations in which the coefficients are
specific numbers.. I will give one of his illustrations of each condition, and then set the
conditions out more generally.

Case (1). Equations 3xti1z3=u?]
x+ 7= 'w"’} ¢
difference 22+ 6

The suitably-chosen number (to dizide by in this case) is 2 5
- 3 (difference)=x+3,
and (lesser expression) — } (difference)=x+ 7 - (x+3)=4, that is, a square.
We have then to find two squares such that
their difference =2 (difference between lesser and 4).

Assume that the lesser=(y+2)?% 2 being the square root of 4.

Therefore (greater square) =3 (lesser) - 8
=32+ 129 +4.
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2. Double-equation of the second degree,

or the general form
Ax*4+ Bx+ C=u*
Ar+Bxr+C =w?
These equations are much less thoroughly treated in Diophan-
tus than those of the first degree. Only such special instances

To make 3%+ 125+ 4 a square we put
3 1= -p)
where p must lie between certain limits which have next to be found. The equation gives
s B2
-3’
In order that y may be positive, 2? must be > 3; and in order that the second of the
original expressions, assumed equal to (¥ +2)%, may be greater than 7 (it is in fact x+7),
we must have (y+2)>2% (an e fortiors limit, since 2§>./7), or y>$.

Therefore ptr>1(-3)

or 16p+57>32%
Suppose that 3°=16p + 533, which gives p=173.
Therefore 2<7% but g2>3.

Put p=3 in the above equation ; therefore
31y +e=0- 3P

and y=4.
Therefore x=(y+2)*-7=129.
Case (2). Equations 6x+ 15=u’} s
2x+ 3=u?f’
difference PrETYI

The suitable-number (again to divide by) in this case is 2;
} (difference) =2x+ 11,

and } (difference) — (lesser expression)=8=1.4,
where 2 is the divisor used. and 4 is the ratio of a square to a square.

Hence two squares have to be found such that

(their difference) =2 (sum of lesser and 8).
If the lesser is »?, the greater is 332+ 16=(4 - p)? say.
Bachet gives, as limits for 2,
Prab >3

and puts p=3. This gives y=4, so that x=6}.

Let us now state Bachet’s conditions generally.

Suppose the equations to be
ax+a=u?
Bx+b=w?"
The difference is (a—g) x+ (a - ).

This has to be mulliplieri by u-f; which is the *‘suitable ” factor in this case, and, if
we subtract the product from gx + 4, we obtain

ab—ap

et o
b a—ﬁ(a ), or o=
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occur as can be easily solved by the methods which we have
described for equations of the first degree.
The following types are found.
(1) pritoxr+a=1
) p’x2+Bx+b=w’}'
The difference is (2 — B)x + (@ — 4), and, following the usual
course, we may, ¢g., resolve this into the factors

(1) The first of Bachet’s conditions is that
ab—af
a-p
(2) The second condition is that
a-ab _pF B
a-f g a-p’
ag -

ab .
or ~—p—= a ratio of a square to a square.

=a square = p%/¢?, say.

It is to be observed that the first of these conditions can be obtained by considering

the equation
(@-ppx+ax{(a-p)(e-2) -2 (@+p)} +(a - 8)* - 2p*(a+d) +p=o0,
obtained on page 74 above.

Diophantus only considers the cases in which this equation reduces to a simple
equation; but the solution of it as a mixed quadratic gives a rational value of x provided
that

{a=8) (e~ 0) - (a+B)}* - (a- f)*{(a - &)* - 29*(a+8) +2'} is a square,

that is, if
24 {(a+B)*~ (a—B)*} +2£*{(a+8) (@ - B)’ - (a® - B%)(a — b)} is a square,
which reduces to afp?+(a~B) (ad—aB)=a square .........cccerrririnnnns (A).
This can be solved (cf. p. 68 above), if
uﬁ:aﬂﬁ is a square. (Bachet’s first condition.)
Again take Bachet’s second condition
aﬁ_a&—a s uare-r—ﬂsa
'T =a sq ] Y,
and substitute 87%s? for a8 - ab in the equation (A) above.
Therefore afp?—(a—B)B8 ’—::a square,
or afp’? - (a - B) B=a square.

This is satisfied by p'=1; therefore (p. 69) any number of other solutions can
be found.
The second condition can.also be obtained directly by eliminating x from the equations
ax+a=u?
Bx+ 1:=«w2} 3
for the result is Lt 4 (-Ipp;ub =,

which can be rationally solved if

af —ak
8

=a square.
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The difference 2* + (« — 8) x is resolved into the factors
z(x+a—B);
and we put Bxr+a=1%(a—B)
which gives x.

resulting equation in p. But the difficulties would generally be great. Take the case of
VI, 6 where

&4 Is have to be made squares,
145+1
If 14x+1=2% x=(2~1)[14;
3 &=y
therefore = 70 + 1 has to be made a square,
or 2* -2+ 197 =a square.

This does not admit of solution unless we could somehow discover empirically one
value of p which would satisfy the requirement, and this would be very difficult.
Let us take an easier case for solution by this method,
24 1=4°
x+r=wl ’
which is solved by Euler (4/gebra, Part 11. Art. 222), and let us compare the working of
the two methods in this case.

1. Euler’s method. Assuming x+ 1=2* and substituting 22~ 1 for x in the quadratic

expression, we have
2% - 292+ 2=a square.

This can only be solved generally if we can discover one possible value of p by trial ;
this however is not difficult in the particular case, for =1 is an obvious solution.

To find others we put 1+¢ instead of p in the expression to be made a square; this
gives

1+ 4¢°+49° +¢* =a square.
This can be solved in several ways.

1. Suppose 1+4¢%+493 + = (1 +¢%%;
thus 49*+ 44°=12¢% whence ¢= —%, p=§ and x= —%.

2. Suppose 1+ 4+ 4+t = (1 - 7Y%
thus 4% +ag®= - 2¢%, and y=—%, p:-i and x=-3,

4

3. Suppose THag' Tag*+oi=(12 2025
and we find, in either case, that g= - 2, so that p= ~ 1, x=o0.

4. Suppose T+4g’ +agt+gi=(1+20%;

2

and we have 4¢°+¢'=4¢% whence q=§, p:% and x=(§> -~ l=449£.

This value of x satisfies the conditions, for
2 2
x+1=(l) g x“+l=—l—§ﬂ= (ﬂ) 3
3 81 9
The above five suppositions therefore give only two serviceable solutions
Jors vy
4 9
To find another solution we take one of the values of ¢ already found, say g= - -;-, and
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The absolute terms in the last case are made equal by multiply-
ing the second equation by (128) or 16384.

(3) One separate case must be mentioned which cannot be
solved, from Diophantus’ standpoint, by the foregoing method,
but which sometimes occurs and is solved by a special artifice.

The form of double-equation is

al +ar=ut }
B2+ bx = w?)..
Diophantus assumes w = m2P,
whence, by (1), xr=al(m* — a),

(2) If we take %x, 2x -2, as factors, half the sum of which is gx— 1, so that the

absolute terms may disappear in the resulting equation, we have

25 o 5. _
6% zx—xg,

AL RIS

or 6572

and x=1,

(3) To find another value by means of the first, namely x= — 5, we substitute y—%
for x in the original expressions. We then have to solve

= &) e e
Py te=uh
T
+-=wl
& 4

Maultiply the latter by 275 50 as to make the absolute terms the same, and we must have

Lol b
% y+ 6 w3,
Subtract from the first expression, and the difference is 32~ %y:y (y— 3’71) ; then,

equating the square of half the difference of the factors to the smaller expression,
we have

1(3_' '8, 25

+\4 PEANTY
so that 961 = 400y + 100.
Therefore
_861 AR (0] X g 689\?
y—4°o, and x=y S x+|—(;;) , A2+1= =)k

(4) If we start from the known value %’ and put y+";° for x in the equations, we

obtain Euler’s fourth value of x, namely ﬁﬁ”.
2965284
Thus all the four values obtained by Euler are more easily obtained by the method of
the ¢ double-equation.”
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and, by substitution in (2), we derive that
B (;ﬂ—,‘i_-m)2 + Tﬂba_——& must be a square,
@B + ba (m? — a)
(= oy
We have therefore to solve the equation
abm® + a(af — ab)=17,
and this form can or cannot be solved by the methods already
given according to the nature of the coefficients’. Thus it can
be solved if (¢B—ad)/a is a square or if a/é is a square.

or =a square.

Exx. from Diophantus:

6x® + 4x=u’
62" + ‘;x= w’} R (VL. 12.)
6x% — sx=2°
6x’—-§x=wﬂ}' (VL. 14.)

(8) Indeterminate equations of a degree higher than the second.

(1) Single equations.

These are properly divided by Nesselmann into two classes ;
the first comprises those problems in which it is required to make
a function of z, of a degree higher than the second, a square; the
second comprises those in which a rational value of x has to be
found which will make any function of z, not a square, but a higher
power of some number. The first class of problems requires the
solution in rational numbers of

Ax*+ B+ ...+ Kx + L =37,
the second the solution of

Az +Bx '+ ..+ Kxr+ L =957
for Diophantus does not go beyond making a certain function of
x a cube. In no instance, however, of the first class does the index
n exceed 6, while in the second class #~ does not (except in a
special case or two) exceed 3.

1 Diophantus apparently did not observe that the above form of double-equation can
be reduced to one of the first degree by dividing by x? and substituting y for 1/x, when it
becomes

et+ay=u",
B+ty=w"

Adapting Bachet’s second condition, we see that the equations can be rationally solved
if (8a - ab)/a is a square, which is of course the same as one of the conditions under which
the above equation @ém?+a (af - ad) can be solved.
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First Class. Equation s
Ax"+Br" 1+ .+ Kx+ L =5
The forms found in Diophantus are as follows:

1. Equation Axd+ Br*+ Cx +d*= 5%

Here, as the absolute term is a square, we might put for y
the expression mx 4+ d, and determine » so that the coefficient
of x in the resulting equation vanishes. In that case

2md=C, and m=C|2d;
and we obtain, in Diophantus’ manner, a simple equation for z,
giving
C? - 4d’B
VLY

Or we might put for y the expression m*®+ nr+ d, and deter-
mine #, # so that the coefficients of #, #? in the resulting equation
both vanish, in which case we should again have a simple equa-
tion for x. Diophantus, in the only example of this form of
equation which occurs (V1. 18), makes the first supposition. The
equation is

r¥ -3+ 3+ 1 =97

and Diophantus assumes y = $r + 1, whence x =21,

2. Equation Ax*+ Bx*4 Cx*+ Dx+ E =3~

In order that this equation may be solved by Diophantus’
method, either 4 or £ must be a square. If A is a square and
equal to 4, we may assume y=ax2+§x+ﬂ, determining 7 so
that the term in 22 vanishes. If £ is a square (= ¢%), we may write
J'=mx?+2%x+e, determining 7z so that the term in 22 in the
resulting equation may vanish. We shall then, in either case,

obtain a simple equation in z.
The examples of this form in Diophantus are of the kind
&t + Bxt 4 Cx* + Dx + =757,
where we can assume y =t ax?+ £x + ¢, determining % so that in
the resulting equation the coefficient of x* or of x may vanish;
when we again have a simple equation.
Ex. from Diophantus (1v. 28):
ort— 48+ 62— 120+ 1 =72
Diophantus assumes y = 3#? — 6x + 1, and the equation reduces to
322°—36x%=0, whence x=3.
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Diophantus is guided in his choice of signs in the expression
+ ax* + kx + ¢ by the necessity for obtaining a “rational ” result.

Far more difficult to solve are those equations in which, the
left-hand expression being bi-quadratic, the odd powers of x are
wanting, Ze. the equations Ax*+4 Cx?+E =y and Azx*+E=7"
even when A4 or E is a square, or both are so. These cases
Diophantus treats more imperfectly.

3. Equation Axi+ Cx*+ E =3
Only very special cases of this form occur. The type is
atrt— x4 &8 = g7
which is written
G p
a’x’—c’+;=y’.

Here y is assumed to be ax or ¢/, and in either case we have
a rational value for z.
Exx. from Diophantus:

25
25r-9+ 2y (v. 27)
This is assumed to be equal to 2522
25 25
25 = (v. 28)

where »? is assumed to be equal to 25/422%

4. Equation Axi+ E =y~

The case occurring in Diophantus is x4+ 97 =3 (V. 29). Dio-
phantus tries one assumption, y =?— 10, and finds that this gives
2*=&;, which leads to no rational result. Instead, however, of
investigating in what cases this equation can be solved, he simply
drops the equation #*+ 97 =#* and seeks, by altering his original
assumptions, to obtain, in place of it, another equation of the same
type which can be solved in rational numbers. In this case, by
altering his assumptions, he is able to replace the refractory equa-
tion by a new one, x4+ 337=5?% and at the same time to find a
suitable substitution for y, namely y=x?— 25, which brings out
a rational result, namely x=12. This is a good example of his
characteristic artifice of * Back-reckoning’,” as Nesselmann calls it.

5. Equation of sixth degree in the special form
—Ax*+ Bxr+c*=y°

1 “ Methode der Zuriickrechnung und Nebenaufgabe.”
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It is only necessary to put y = x®+¢, and we have
—Ax*+ B=2cx?,
LI e
A+2c’
which gives a rational solution if B/(4 + 2¢) is a square.

or 23

6. If, however, this last condition does not hold, as in the case
occurring 1V. 18, #%— 164°+ x + 64 =5, Diophantus employs his
usual artifice of “back-reckoning,” which enables him to replace
the equation by another, x%— 1282+ x + 4096 =3, where the
condition is satisfied, and, by assuming y =1*+ 64, x is found to
be .

Second Class. Equation of the form

A+ B4 ..+ Kx+ L=y
Except for such simple cases as 4#* =33, Ax* =35 where it is only
necessary to assume y = mx, the only cases occurring in Diophantus
are of the forms
Ax*+ Bx+ C=p,
Ax* 4+ B+ Cx+ D=3

1. Equation Ax»+Bxr+ C=y*

There are only two examples of this form. First, in VI 1 the
expression x* — 4x + 4 is to be made a cube, being already a square.
Diophantus naturally assumes » —2=a cube number, say 8, and
r=1I0.

Secondly, in VI. 17 a peculiar case occurs. A cube is to be
found which exceeds a square by 2. Diophantus assumes (¥ — 1)
for the cube and (x+ 1)* for the square, and thus obtains the
equation

F—343xr—1=2"+2r+3,

or r4xr=94ri+4,

previously mentioned (pp. 66-7), which is satisfied by r=4.
The question arises whether it was accidentally or not that this
cubic took so simple a form. Were x—1, x+ 1 assumed with
knowledge and intention? Since 27 and 25 are, as Fermat
observes!, the only integral numbers which satisfy the conditions,
it would seem that Diophantus so chose his assumptions as to lead
back to a known result, while apparently making them arbitrarily
with no particular reference to the end desired. Had this not

! Note on VI. 17, Oeuvres, 1. pp. 333~4» IL. P. 434. The fact was proved by Euler
(Algebra, Part 11, Arts, 188, 193). See note on VL. 17 énfra for the proof,
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been so, we should probably have found him, here as elsewhere
in the work, first leading us on a false tack and then showing us
how we can correct our assumptions. The fact that he here
makes the right assumptions to begin with makes us suspect that
the solution is not based on a general principle but is empirical
merely.

2. Equation Ax*+Bx+ Cx+ D =5

If 4 or D is a cube number, this equation is easy of solution.
For, first, if 4 =4° we have only to write y=ax+3—§,, and we
obtain a simple equation in .

Secondly, if D =d°, we puty:;i,

If the equation is @%®+ Bx*+ Cx+ d*=3° we can use either
assumption, or we may put y = ax + 4, obtaining a simple equation
as before.

Apparently Diophantus used the last assumption only; for
in IV. 27 he rejects as impossible the equation

8x*— 2+ 8xr—1=77,

because y = 2x—1 gives a negative value x=— &, whereas either
of the other assumptions gives a rational valuel.

x4+ d.

(2) Double-equations.

There are a few examples in which, of two functions of x, one
is to be made a square, and the other a cube, by one and the same
rational value of . The cases are for the most part very simple;
¢g. in V1. 19 we have to solve

4r+2=p
204 1= z’} !
thus ® = 22% and 2= 2.
A rather more complicated case is V1. 21, where we have the
double-equation
22+ 2x =*
B2t tx= z’}‘
Diophantus assumes y = mx, whence x = 2/(m* — 2), and we have

2 )3+2 2 )’ 2 o
(m’—z (m’—z e

2m
or — =8

(m* =3y
! There is a special case in which C and D vanish, 423+ Bx*=3% Here y is put
equal to mx, and x=B[(m®- 4). Cf. 1v.6, 28 (2).
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To make 2#* a cube, we need only make 2 a cube or put
m=4. This gives r=14.

The general case

Ax*+ Bx*+ Cxr=2°
b2 + cx = y“}

would, of course, be much more difficult; for, putting y=mzx, we
have
: x=c/(m?—b),
and we have to solve

a )¢ A c
4 (m’-iZ) +B(m’—3) +C(7n’—é)=za’
or Cemt + ¢ (Be—26C) m? + be (6C — Be) + At =18,

of which equation the above corresponding equation is a very
particular case.

Summary of the preceding investigation.

1. Diophantus solves completely equations of the first degree,
but takes pains to secure beforehand that the solution shall be
positive. He shows remarkable address in reducing a number of
simultaneous equations of the first degree to a single equation in
one variable,

2. For determinate equations of the second degree he has
a general method or rule of solution. He takes, however, in the
Arithmetica, no account of more than one root, even where both
roots are positive rational numbers. But, his object being simply
to obtain some solution in rational numbers, we need not be
surprised at his ignoring one of two roots, even though he knew
of its existence.

3. No equations of a degree higher than the second are solved
in the book except a particular case of a cubic.

4. Indeterminate equations of the first degree are not treated
of in the work. Of indeterminate equations of the second degree,
as Ax® + Bx + C=y? only those cases are fully dealt with in which
A or C vanishes, while the methods employed only enable us to
solve equations of the more general forms

Az*+ C=y* and Ax*+ Bx+C=3*
when 4, or C, or }5* — A( is positive and a square number, or (in
the case of A2?+ C'= %) when one sclution is already known.
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5. For double-equations of the second degree Diophantus has
a definite method when the coefficient of x* in both expressions
vanishes ; the applicability of this method is, however, subject to
conditions, and it has to be supplemented in one or two cases by
another artifice. Of more complicated cases we find only a few
examples under conditions favourable for solution by his method.

6. Diophantus’ treatment of indeterminate equations of degrees
higher than the second depends upon the particular conditions of
the problems, and his methods lack generality.

7. More wonderful than his actual treatment of equations are
the clever artifices by which he contrives to avoid such equations
as he cannot theoretically solve, eg. by his device of “back-
reckoning,” instances of which would have been out of place in
this chapter and can only be studied in the problems themselves.

I shall not attempt to class as “methods” certain headings
in Nesselmann’s classification of the problems, such as () “ Solution
by mere reflection,” (&) “ Solution in general expressions,” of which
there are few instances definitely so described by Diophantus, or
(¢) “ Arbitrary determinations and assumptions.” The most that
can be done by way of describing these “methods” is to quote
a few characteristic instances. This is what Nesselmann has
done, and he regrets at the end of his chapter on “ Methods of
Solution ” that it must of necessity be so incomplete. To under-
stand and appreciate the various artifices of Diophantus it is in
fact necessary to read the problems themselves in their entirety.

With regard to the “ Use of the right-angled triangle,” all that
can be said of a general character is that only “rational” right-
angled triangles (those namely in which the three sides can all be
represented by rational numbers) are used in Diophantus, and
accordingly the introduction of the “right-angled triangle” is
merely a convenient way of indicating the problem of finding
two square numbers, the sum of which is also a square number.
The general form used by Diophantus (except in one case, VI 19,
g.v.) for the sides of a right-angled triangle is (a*+ &), (a*— &),
2ab, which expressions clearly satisfy the condition

(@ + By = (a* — &) + (2a0)"
The expression of the sides of a right-angled triangle in this form
Diophantus calls “forming a right-angled triangle from the
numbers 2 and 4.” His right-angled triangles are of course
formed from particular numbers. “Forming a right-angled
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triangle from 7, 2” means taking a right-angled triangle with sides
(72 + 2%), (72— 2%, 2.7.2, or 53, 45, 28.

II. METHOD OF LIMITS.

As Diophantus often has to find a series of numbers in
ascending or descending order of magnitude, and as he does not
admit negative solutions, it is often necessary for him to reject
a solution which he has found by a straightforward method
because it does not satisfy the necessary condition; he is then
very frequently obliged to find solutions which lie within certain
limits in place of those rejected.

I. A very simple case is the following: Required to find
a value of x such that some power of it, %, shall lie between two
given numbers. Let the given numbers be ¢,4. Then Diophantus’
method is to multiply both @ and & by 2%, 3* and so on, successively,
until some #zth power is seen which lies between the two products.
Thus suppose that ¢* lies between 4" and §p"; then we can put
x=c[p, in which case the condition is satisfied, for (c/p)" lies
between 2 and 4.

Exx. In1v. 31 (2) Diophantus has to find a square between
1} and 2. He multiplies both by a square, 64 ; this gives 8o and
128, and 100 is clearly a square which lies between them; there-
fore (42)? or 23 satisfies the prescribed condition.

Here, of course, Diophantus might have multiplied by any
other square, as 16. In that case the limits would have become
20 and 32; between these lies the square 25, which gives the same
square #% as that before found. .

In V1. 21 a sixth power (“‘cube-cube”) is sought which shall
lie between 8 and 16. The sixth powers of the first four natural
numbers are 1, 64, 729, 4096. Multiply 8 and 16 by 2° or 64, and
we have as limits 512 and 1024, between which 729 lies. There-
fore 722 is a sixth power satisfying the given condition. To
multiply by 729 in this case would not give us a solution.

2. Sometimes a value of x has to be found which will give
some function of x a value intermediate between the values of two
other functions of .

Ex. 1. In1v. 25 it is necessary to find a value of x such that
8/(#* +x) shall lie between » and » + 1.
The first condition gives 8 > 4° + 2%
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Diophantus accordingly assumes that
=+ {iP=2+22+ir+,
which is greater than % + 22

Thus » =34 satisfies one condition. It is also seen to satisfy
i 8 L
the second condition, or o7 ) x+ 1. Diophantus, however, says

nothing about the second condition being satisfied ; his method is,
therefore, here imperfect.

Ex. 2. In V. 30 a value of x has to be found which shall make
x>} (2®— 60) but <1(2?—60),

that is, 22 —60> 51
2 —60< 8x)

Hence, says Diophantus, x is not less than 11 and not greater
than 12. We have already spoken (p. 60 sqq.) of his treatment
of such cases.

Next, the problem in question requires that 22—60 shall be
a square. Assume then that

2t —60=(x—m),
and we have x = (m* + 60)/2m.

Since, says Diophantus, x is greater than 11 and less than 12,
it follows that
m?+ 60 > 22m but <24m;

and s must therefore lie between 19 and 21 (cf. p. 62 above).
He puts 72 =20, and so finds ¥ =114.

III. METHOD OF APPROXIMATION TO LIMITS.

We come, lastly, to a very distinctive method called by
Diophantus mapigdrys or mapigoryTos dywyy. The object of this
is to solve such problems as that of finding two, or three, square
numbers the sum of which is a given number, while each of them
approximates as closely as possible to one and the same number.

This method can be best exhibited by giving Diophantus’ two
instances, in the first of which zwo such squares, and in the second
three, are required. In cases like this the principles cannot be
so well indicated with general symbols as with concrete numbers,
which have the advantage that their properties are immediately



96 INTRODUCTION

obvious, and the separate expression of conditions is rendered
unnecessary.
Ex. 1. Divide 13 into two squares each of which >6 (V. 9).
Take half of 13, or 6§, and find what small fraction 1/%* added
to it will make it a square: thus

63 +%, or 26+J%, must be a square.

Diophantus assumes
I
28
whence y =10 and 1/y* = 15, or 1/#* =3} ; and
6} + 345 = a square, (§}).

[The assumption of (57 + 1)* is not arbitrary, for assume
26"+ 1=(zy+ 1), and y is then 2p/(26 —p*) ; since 1/y should be
a small proper fraction, 5 is the most suitable and the smallest
possible value for p, inasmuch as 26 — 2* < 2p or p* + 29 + 1 > 27.]

It is now necessary, says Diophantus, to divide 13 into two
squares the sides of which are both as near as possible to §§.

Now the sides of the two squares into which 13 is naturally
decomposed are 3 and 2, and

3is > §§ by o,
2is < §} by 4.
But, if 3 — 5, 2 + §} were taken as the sides of two squares, the
sum of the squares would be

2(3y=

Iﬂ
26+ =(5+;), or 265"+ 1= (55 + 1),

2. 2601
400 ’
which is > 13.

Accordingly Diophantus puts 3—9«, 2 + 11x for the sides of
the required squares, where therefore x is not exactly ;& but
near it.

Thus (3—9r)+(+11x)=13,
and Diophantus obtains =1t

The sides of the required squares are 37, 338

[It is of course a necessary condition that the original number,
here 13, shall be a number capable of being expressed as the sum
of two squares.]
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Other instances of the application of the method will be found
in V. 10, 12, 13, 14, where, however, the squares are not required to
be nearly equal, but each of them is subject to limits which may
be the same or different; eg. sometimes each square is merely
required to be less than a given number (10, say), sometimes the
squares lie respectively between different pairs of numbers, some-
times they ‘are respectively greater than different numbers, while
they are always subject to the condition that their sum is a given
number.

As it only lies within the scope of this Introduction to explain
what we actually find in Diophantus, I cannot do more than give
a reference to such investigations as those of Poselger in his
“Beitridge zur unbestimmten Analysis” published in the Abkand-
lungen der Koniglichen Akademie der Wissenschaften su Berlin aus
dem Jakre 1832, Berlin, 1834. One section of this paper Poselger
entitles “ Anniherungs-methoden nach Diophantus,” and obtains
in it, on Diophantus’ principles, a method of approximation to the
value of a surd which will furnish the same results as the method
of continued fractions, with the difference that the “ Diophantine
method” is actually quicker than the method of continued frac-
tions, so that it may serve to expedite the latter,
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But we may also regard
mnt — a(m?+nt — 1) + a?=p*
as an indeterminate equation in 7 of which we know one solution,
namely m=n% 1.
Other solutions are then found by substituting 2+ (# + 1) for
m, whence we obtain the equation
(w—a)2+2{n*(nt1)—a(nt1)}s
+r—a)nt 1 —a (= D)+ @ =p
or (—a)2+2(m—a)y(nt1)z+{n(nt1)—al’=p,
which is easy to solve in Diophantus’ manner, since the absolute
term is a square.

But in the problem V. 3 #4ree numbers are required, such that
each of them, and the product of each pair, when severally added
to a given number, produce squares. Thus if the third number be
2z, three additional conditions have to be satisfied, namely

gta=u zx+a=7, zyta=wl
The two last conditions are satisfied, if 7 + 1 = #, by, putting
z=2(x+y)—1=4m*+ 4m+1—4a,
when xz+a={m(2m+1) - 2a}*
and yeta={(m+1)(2m+1)—2a}*;
and perhaps this means of satisfying the conditions may have
affected the formulation of the Porism?

The problem V. 4 immediately following assumes the truth of
the same Porism with — ¢ substituted for + a.

Porism 2. Inv. 5 Diophantus says, “ Again we have it in the
Porisms that, ¢ Given any two consecutive squares, we can find in
addition a third number, namely the number greater by 2 than the
double of the sum of the two squares, which makes the greatest of
three numbers such that the product of any pair of them added to
either the sum of that pair or the remaining number gives a square.””

That is, the three numbers

m?, (m+1)% 4(m*+m+ 1)

! Euler has a paper describing and illustrating a general method of finding such
“porisms " the effect of which is to secure that, when some conditions are satisfied, the
rest are simultaneously satisfied (““De problematibus indeterminatis quae videntur plus
quam determinata” in Novi Commentarii Acad. Petropol. 1756~57, Vol. vi. (1761),
p- 85 sqq.=C 1 arithmeticae colle I. pp- 245—259). This particular
porism of Diophantus appears as a particular case in § 13 of the paper.
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have the property that the product of any two plus either the sum
of those two or the remaining number gives a square. In fact, if
X, ¥, Z denote the numbers respectively,

XY+ X+ Y=(m+ m+1), XY+Z=(m+ m+2)}
YZ + Y+ Z=2m+3m+3), YZ+X=0r+3m+2),
ZX+Z+X=@m+ m+2), ZX+ YV=(0m+ m+1)~

Porism 3 occurs in v. 16. Unfortunately the text is defective
and Tannery has had to supply three words?; but there can be no
doubt that the correct statement of the Porism here in question is
“The difference of any two cubes is also the sum of two cubes,”
7. can be transformed into the sum of two cubes, or two cubes can
be found the sum of which is equal to the difference between any
two given cubes. Diophantus contents himself with the enuncia-
tion of the proposition and does not show how to prove it or how
he effected the transformation in practice. The subject of the
transformation of sums and differences of cubes was investigated
by Vieta, Bachet and Fermat.

Vieta (Zetetica, 1V. 18-20) has three problems on the subject.

(1) Given two cubes, to find in rational numbers two other
cubes such that their sum is equal to the difference of the given
cubes?®.

As a solution of @* — & =x*+3* he finds
_a(@—25) _b(a-F)

S Texk YT T

1 Exouer 3¢ év Tots Ioplopasw 811 *“ xdrrww ddo xGBwr §) bxepoxh) xiBwr <30 sUrfeud
éoerr>."

2 The solution given by Vieta is obtainable thus. The given cubes being 4%, &%, where
a>5, we assume x — 4, a - kx as the sides of the required cubes.

Thas (x— 83 +(a- Ax)3=a® -5,
whence 23 (1 - 23) + 322 (ad2 - 8) + 3x (82 - a?k) =o0.

This reduces to a simple equation if we assume

* B-at=o0, or k=4al,

_3(6-ak)  3a%
= &

in which case

and the sides of the cubes are therefore
b(2a3-5%) a(a®—28)
@B 0 SR
Vieta’s second problem is similarly solved by taking a+x, £x—4 as the sides of the
required cubes, and the third problem by taking x— &, £x —a as the sides of the required
cubes respectively.
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(2) Given two cubes, to find in rational numbers two
others such that their difference is equal to the sum of the given
cubes.

Solving @+ & = x*— 3%, we find that

x__a(a3+2b3) J,=17(2a3+b°’)

=TE—r oy o

(3) Given two cubes, to find in rational numbers two cubes
such that their difference is equal to the difference of the given
cubes.

For the equation a® — & = x* — », Vieta finds

2PER - B)s, IRt ot
TR FRe LT R
as a solution?,

In the solution of (1)  is clearly negative if 24* > a*; therefore,
in order that the result may be “rational,” 2® must be >2#. But
for a “rational ” result in (3) we must, on the contrary, have a® < 24,
Fermat was apparently the first to notice that, in consequence, the
processes in (1) and (3) exactly supplement each other, so that by
employing them successively we can effect the transformation
required in (1) even when a® is not > 24°.

The process (2) is always possible; therefore, by a suitable
combination of the three processes, the transformation of a sum
of two cubes into a difference of two cubes, or of a difference of
two cubes into a sum or a difference of two other cubes is always

! Vieta’s formulae for these transformations give any number of very special solutions
(in integers and fractions) of the indeterminate equation a3+ 33 + 28=123, including solutions
in which one of the first three cubes is negative. These special solutions are based on
the assumption that the values of two of the nnknowns are given to begin with. Euler
observed, however, that the method does not give all the possible values of the other two
even in that case. Given the cubes 33 and 43, the method furnishes the solution
33+43+(%5)3= (“3—772)8, but not the simpler solution 33+ 43+53=63. Euler ac-
cordingly attacked the problem of solving the equation #3433+ 28=2% more generally.
He began with assuming only one, instead of two, of the cubes to be given, and, on that
assumption, found a solution much more general than that of Vieta. Next he gavea
more general solution still, on the assumption that #on¢ of the cubes are given to begin
with. Lastly he proceeded to the problem 70 jfind all the sets of three integral cubes the
sum of whick is a cube and showed how to obtain a very large number of such sets
including sets in which one of the cubes is negative (Nowvi Commentarii Acad. Petropol-
1756-57, Vol. VI. (1761), p. 155 sq.= C tati arithmeticae, 1. pp. 193—207).
The problem of solving 34 y3=23+ 23 in integers in any number of ways had occupied
Frénicle, who gave a number of solutions (OQenwvres de Fermat, 111, pp- 420, 535) ; but the
method by which he discovered them does not appear,




THE PORISMS AND OTHER ASSUMPTIONS 103

practicable’. Fermat showed also how, by a repeated use of the
several processes as required, we can transform a sum of two cubes
into a sum of two other cubes, the latter sum into the sum of two
others and so on ad infinitum?

Besides the “Porisms” there are many other propositions
assumed or implied by Diophantus which are not definitely called

1 Fermat (note on 1v. 2) illustrates by the following case :

Given two cubes 125 and 64, to transform their difference into the sum of two other
cubes.

Here a=35, b=4, and so 263>43; therefore we must first apply the third process

by which we obtain
3= (48 fohe
i ( ) (63) ’
5

3 3
As (16438) >¢(03) , we can, by the first process, turn the difference between the

2483 5\%.
cubes { 7 and -} into the sum of two cubes.
63 63

“In fact,” says Fermat, *if the three processes are used in turn and continued
ad infinitum, we shall get a succession ad infinitum of two cubes satisfying the same
condition ; for from the two cubes last found, the sum of which is equal to the difference
of the two given cubes, we can, by the second process, find two more cubes the difference
of which is equal to the sum of the two cubes last found, that is, to the difference
between the two original cubes; from the new difference between two cubes we can
obtain a new sum of two cubes, and so on ad infinitum.”

As a last illustration, to show how a difference between cubes can be transformed into
the difference between two other cubes even where the condition for process (3) is not
satisfied, Fermat takes the case of 8~ 1, 7.c. the case where

a=2, b=1 and a3>28,

First use process (1) and we have

e (0
3 3
Then use process (2), and

G +6r-)- (&)

? Suppose it required to solve the fourth problem of transforming the sum of two cubes
into the sum of two other cubes.

Let it be required so to transform 23+ 13 or 9.

First transform the sum into a difference of two cubes by process (2). This gives

seo=(2)-(3)

The latter two cubes satisfy the condition for process (3) and, applying that process,

we get
(zo) (17) (188479)3 = (36510)3
90391 90391/
The cubes last found satisfy the condition for process (1), and accordingly the difference

between the said last cubes, and therefore the sum of the original cubes, is at last trans-
formed into the sum of two other cubes.
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porisms, though some of them are of the same character as the
three porisms above described.
Of these we may distinguish two classes.

1. The first class of theorems or facts assumed without ex-
planation by Diophantus are more or less of the nature of identical
Jormulae. Some are quite simple,e.g. the facts that the expressions
{3(@+b)}*—ab and ae*(a+1)°+a+(a+ 1) are respectively
squares, that the expression a(@®—a)+a+(a*—a) is always a
cube, and the like.

Others are more difficult and betoken a certain facility in work-
ing with quasi-algebraical expressions. Examples of this kind are
the following :

(@) If X =a%+ 24, Y =(a+1)°x+2(a+1),o0r, in other words,
if 2 X4+ 1=(ar+1), 2V +1={(@+1)x+1}° then XV +1 is a
square [IV. 20]. As a matter of fact,

XY +i1={a(a+1)x+(22+1)}2

(B) 8 times a triangular number plus 1 gives a square [IV. 38].

In fact, 8 .L"z‘“ 2,

+1=(2x+1)%

() If Xta=m’, Yia=(m+1), and Z=2(X+ ¥V)—1,
then the expressions Y2 +a, ZX +a, XY t a are all squares.
(The upper signs refer to the assumption in V. 3, the lower to that
in v. 4.)

In fact, YZ ta={(m+1)(2m+1)7F 22}3,
ZX ta={m(2m+1)F 2a}’,
XY ta={m@m+1)7Fal®
@) U X=mit2, V=(m+1)"+2, Z=2{m*+(m+ 1) +1}+2,
then the six expressions
YZ-(Y+Z2), ZX—(Z+X) XV-(X+Y)
YZ-X, ZX-Y, Xy-z
are all squares [V. 6].
In. fact,
YZ - (YV+2)=(@m*+3m+3), YZ-X=02m+3m+4), etc.

2. The second class is much more important, consisting of a
number of propositions in the Theory of Numbers which we find
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first stated or assumed in the Arithmetica. It was, in general, in
explanation or extension of these that Fermat’s most famous notes
were written. How far Diophantus possessed scientific proofs of
the propositions which he assumes, as distinct from a merely
empirical knowledge of them, must remain to a great extent
matter of speculation.

(@) Theorems in Diophantus respecting the composition of numt-
bers as the sum of two squares.

(1) Any square number can be resolved into two squares in
any number of ways, 11 8.

(2) Any number which is the sum of two squares can be
resolved into two other squares in any number of ways, IL 9.

N.B. It is implied throughout that the squares may be frac-
tional as well as integral.

(3) If there are two whole numbers eack of whick is the sum of
two squares, thetr product can be resolved into the sum of two squares
in two ways, 1L 19. y ;

The object of I1I. 19 is to find four rational right-angled triangles
having the same hypotenuse. The method is this. Form two
right-angled triangles from (a, &) and (¢, d) respectively, Ze. let
the sides of the triangles be respectively

a*+ B, a* — 8, 2ab,
and e+ d E—d? 2cd.

Multiplying all the sides in each by the hypotenuse of the other,
we have two triangles with the same hypotenuse, namely

(@ + &) (¢ + d?), (a® — ) (S + d?), 2ab (& + d?),
and (@ + P)(2+ d), (&8 + &) (& — d?), 2¢cd (a* + &°).

Two other triangles having the same hypotenuse are obtained
by using the theorem enunciated. In fact,

(@ + )& + &%) = (ac + bdy +(ad T bc)

and the triangles are formed from ac +6d, ad ¥ bc, being the
triangles

(@2 + B)( + &%), 4abed + (@ — B) (& — d?), 2 (ac + bd)(ad — bc),
(@ + &)(2 + &%), 4abed — (a* — &) (¢ — d?), 2 (ac — bd)(ad + bc).
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In the case taken by Diophantus
O+ =2+ =3,
a+di=31427=13,

and the four triangles are respectively

(65, 52, 39), (65, 60, 25), (65, 63, 16), (65, 56, 33).

(If certain relations® hold between e, &, ¢, &, this method fails.
Diophantus has provided against them by taking two triangles “in
the smallest numbers” (Vo éayloTwv dpifudv), namely 3,4, 5 and
5, 12, 13.) -

Upon this problem III. 19 Fermat has a long and important
note which begins as follows?:

“[1] A prime number of the form 47+ 1 is the hypotenuse of
a right-angled triangle in one way only, its square is so in two
ways, its cube in three, its biquadrate in four ways, and so on ad
infinitum.

“[2] The same prime number 4~ + 1 and its square are the
sum of two squares in one way only, its cube and its biquadrate
in two ways, its fifth and sixth powers in three ways, and so on ad
infinitum.

“{3] If a prime number which is the sum of two squares be
multiplied into another prime number which is also the sum of
two squares, the product will be the sum of two squares in two
ways ; if the first prime be multiplied into the square of the second

1 (1) We must not have a/6=c[d or alb=d]c, for in either case one of the perpendiculars
of one of the resulting triangles vanishes, making that triangle illusory. Nor (2) must
¢/d be equal to (a+6)/(a—8) or to (a-6&)/(a+8), for in the first case ac—bd=ad+ée,
and in the second case ac+dd=ad -bc, so that one of the sums of squares equal to
(a2+6?) (2 +d?) is the sum of two egual squares, and consequently the triangle formed
from the sides of these equal squares is illusory, one of its perpendicular sides vanishing.

% G. Vacca (in Bibliotheca Mathematica, 113. 1901, pp. 358-9) points out that Fermat
seems to have been anticipated, in the matter of these theorems, by Albert Girard, who
has the following note on Diophantus v. 9 (Ocuvres mathématiques de Simon Stevin par
Albert Girard, 1634, p. 156, col. 1):

‘“ ALB. GIR. Determinaison d'un nombre qui se peut diviser en deux quarres enticrs.

I. Tout nombre quarré.

II. Tout nombre premier qui excede un nombre quaternaire de l'unité.

III. Le produict de ceux qui sont tels.

IV. Et le double d’un chacun d’iceux.

Laquelle determinaison n'estant faicte n'y de I’Autheur n’y des interpretes, servira tant
en la presente et suivante comme en plusieurs autres.”

Now Girard died on g December, 1632; and the Theorems of Fermat above
quoted are apparently mentioned by him for the first time in his letter to Mersenne of
25 December, 1640 (Ocuvres de Fermat, 11. p. 213). Was the passage of Girard known
to Fermat?
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prime, the product will be the sum of two squares in three ways ;
if the first prime be multiplied into the cube of the second, the
product will be the sum of two squares in four ways, and so on
ad infinitum'.”

It is not probable that Diophantus was aware that prime num-
bers of the form 4 + 1 and numbers arising from the multiplication
of such numbers are the only classes of numbers which are always
the sum of two squares; this was first proved by Euler®. But it
is remarkable that Diophantus should have selected the first two
prime numbers of the form 47+ 1, namely 5 and 13, which are
both sums of two squares, as the hypotenuses of his first two right-
angled triangles and then made their product, 65, the hypotenuse
of other right-angled triangles, that product having precisely the
property of being, as in Fermat’s [3], the sum of two squares in
two ways. Diophantus may therefore have had an inkling, whether
obtained empirically or otherwise, of some of the properties enunci-
ated by Fermat.

(4) Still more remarkable is a condition of possibility of solution
prefixed to the problem v. 9. The object of this problem is “to
divide 1 into two parts such that, if a given number is added to
either part, the result will be a square.” Unfortunately, the text
of the added condition is uncertain. There is no doubt about the
first few words, “ The given number must not be odd,” i.e. No number
of the form qn + 3 [or 4n — 1] can be the sum of two squares.

The text, however, of the latter half of the condition is corrupt.
The true condition is given by Fermat thus: “ 7ke given number
must not be odd, and the double of it increased by one, when divided
by the greatest square whick measures it, must not be divisible by a
prime number of the form 4n—1" (Note upon V. g; also in a
letter to Roberval3) There is room for any number of conjectures
as to what may have been Diophantus’ words*.

1 For a faller account of this note see the Supplement, section 1.

2 Novi Commentarii Acad. Pelro/»al 1752-3, Vol. 1v. (1758), pp- 3-40, and 1754-5,
Vol. v. (1760), pp- 3-58=C¢ arithmeticae, 1. pp. 1§5-173 and pp. 210-233 ;
cf. Legendre, Zaklentheorie, tr. Maser, 1. p. 208; Weber and Wellstein’s Encyclopidic
der Elementar-Mathematik, 1,. pp. 285 sqq.

3 Qeuvres de Fermat, 11. pp. 2034 See the Supplement, section 1.

4 Bachet’s text has 8¢t 3% Tov 5idbuevor uﬁ're rcpumdr elvas, phre & dixhaclwy alrod
Y’ p° d. peifora Exy uépos 3. % perpetrar Uxd 7o A

He also says that a Vatican MS. reads ;u)-rs [ GLfXaaluv alrob dpfudy povdda a.
petfova Exn pépos Téraprov, 1§ perpeirar imd Tob wpdrov dpbuod.

Neither does Xylander help us mnch. He frankly tells us that he cannot understand
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There would seem to be no doubt that in Diophantus’ condition
there was something about “double the number” (7e. a number of
the form 47), also about “greater by unity ” and “a prime number.”
It seems, then, not unlikely that, if Diophantus did not succeed in
giving the complete sufficient and necessary condition stated by
Fermat, he made an approximation to it; and he certainly knew
that no number of the form 47+ 3 could be the sum of two
squares’.

(6) On numbers which are the sum of three squares.

In the problem V. 11 a condition is stated by Diophantus re-
specting the form of a number which, added to three parts of unity,
makes each of them square. If 2 be this number, clearly 3a+ 1
must be divisible into three squares.

Respecting the number @ Diophantus says, “ It must not be 2
or any multiple of 8 increased by 2.”

That is, @ number of the form 24n+ 7 cannot be the sum of three
squares. Now the factor 3 of 24 is irrelevant here, for with respect
to three this number is of the form 3 + 1, and this, so far as 3 is
concerned, might be a square or the sum of two or three squares.
Hence we may neglect the factor 3 in 242.

We must therefore credit Diophantus with the knowledge of

the passage. “Imitari statueram bonos grammaticos hoc loco, quorum (ut aiunt) est
multa nescire. Ego verd nescio heic non multa, sed paene omnia. Quid enim (ut
reliqua taceam) est whre ¢ durhaclwy abrol ap us a etc., quae causae huius rpordiopiouobd,
quae processus? immo qui processus, quae operatio, quae solutio ?”

Nesselmann discusses an attempt made by Schulz to correct the text, and himself
suggests prfre 1o Surhaclova adrod dpludy wovdde uelfova Exew, ds perpeirar vmwd Twos
wpdrrov dpifpod. But this ignores uépos réraprov and is not satisfactory.

Hankel, however (Gesck. d. Math. p. 169), says: *‘Ich zweifele nicht, dass die
von den Msscr. arg entstellte Determination so zu lesen ist: Ael 83 7dv Sidbuevor pijre
wepioody elvar, phre Tov dmhaclova adrod dplbudv povddi & pelfova perpelzfac vxd Tov
wpdTov dpbuob, 3s &v povdde @ uel{wy &xy pépos Téraprov.” This correction seems a
decidedly probable one. Here the words uépos téraprov find a place; and, secondly,
the repetition of pordd @ pelfwr might well confuse a copyist. 7ov for 7of is of course
natural enough; Nesselmann reads rwos for Tov.

Tannery, improving on Hankel, reads Aef ) 7ov 8udbuevor uire wepioodv elvar, prjre
+7dv Surhdowov avrod kal povddt g pelfova perpeigfar Vwd rov wpdrov dplBuot <od 6
povdde ulg pelfwv> Exp pépos Téraprov t, *“ the given number must not be odd, and twice
it plus 1 must not be measured by any prime number which, when increased by 1, is
divisible by 4.” :

1 A discussion of the text and a suggestion as to the considerations which may have
led to the formulation of the condition will be found in Jacobi, ¢ Ueber die Kenntnisse
des Diophantus von der Zusammensetzung der Zahlen” (Berliner Monatsberichte, 18475
Gesammelte Werke, V1., 1891, pp. 332~344)-
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the fact that no number of the form 8n+ 7 can be the sum of
three squares'.

This condition is true, but does not include @// the numbers
which cannot be the sum of three squares, for it is not true that
all numbers which are not of the form 8z + 7 are made up of three
squares. Even Bachet remarked that the number 2 might not be
of the form 327+9, or a number of the form g6z + 28 cannot be
the sum of three squares.

Fermat gives the conditions to which 2 must be subject thus?

Write down two geometrical series (common ratio of each 4),
the first and second series beginning respectively with 1, 8,

I 4 16 64 256 1024 4096
8 32 128 512 2048 8192 32768;
then 2 must not be (1) any number obtained by taking twice any
term of the upper series and adding all the preceding terms, or
(2) the number found by adding to the numbers so obtained any
multiple of the corresponding term of the second series.
Thus 2 must not be

8k+2.1 = 8k+2,
32842.4+1 = 32£+9,
128£+2.164+4+1 =128%+37,

51284 2.64+16+4+ 1 =512k + 149,

and so on, where £=0 or any integer.

Thatis,since I + 4 +4*+ ... + 4" =4(4" — 1), @ cannot be either

2.4 4+3(@-)=4(7.4"—1)

or 2.4+ 4(7. 4" —1)=1(248. 4"+ 7 .4"~1);
therefore 32 + 1 cannot be of the form 4™ (244 + 7) or 47 (8% + 7).

Again, there are other problems, ¢g. V. 10 and V. 20, in which,
though conditions are necessary for the possibility of solution, none
are mentioned ; but suitable assumptions are tacitly made, without
explanation. It does not follow, from the omission to state the
conditions, that Diophantus was ignorant of even the minutest

points connected with them; as, however, we have no definite
statements, we must be content to remain in doubt.

! Legendre proved (Zaklentheorie, tr. Maser, 1. p. 386), that numbers of this form are
the only o4d numbers which are not divisible into three squares.
2 Note on Diophantus V. 11.
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(c) Composition of numbers as the sum of four squares.

Every number is either a squave or the sum of two, three ov four
squares. This well-known theorem, enunciated by Fermat!, and
proved by Lagrange® (who followed up results obtained by Euler)
shows at once that any number can be divided into four squares
either integral or fractional, since any square number can be divided
into two other squares, integral or fractional. We have now to look
for indications in the Arithmetica as to how far Diophantus was
acquainted with the properties of numbers as the sum of four squares.
Unfortunately, it is impossible to decide this question with anything
like certainty. There are three problems, Iv. 29, 30 and V. 14, in
which it is required to divide a number into four squares, and from
the absence of mention of any condition to which the number must
conform, considering that in both cases where a number is to
be divided into #:ree or two squares, V. 1T and V. 9, he does
state a condition, we should probably be right in inferring that
Diophantus was aware, at least empirically, that any number could
be divided into four squares. That he was able to prove the
theorem scientifically it would be rash to assert. But we may
at least be certain that Diophantus came as near to the proof of
it as did Bachet, who takes all the natural numbers up to 120
and finds by trial that all of them can actually be expressed
as squares, or as the sum of two, three or four squares in whole
numbers. So much we may be sure that Diophantus could do, and
hence he might have empirically satisfied himself that it is possible
to divide any number into four squareé, integral or fractional, even
if he could not give a rigorous mathematical demonstration of the
general theorem.

1 See note on Diophantus 1v. 293 cf. also section 1. of the Supplement.

2 ¢ Démonstration d’un théoréme d’arithmétique ” in Nowveaux Mémoires de I Acad.

royale des sciences de Berlin,année 17750, Berlin 1772, pp. 123-133 = Ocwvres de Lagrange,
111, pp. 187-201; cf. Wertheim’s account of the proof in his Diophantus, pp. 324-330.



CHAPTER VI

THE PLACE OF DIOPHANTUS

IN algebra, as in geometry, the Greeks learnt the beginnings
from the Egyptians. Familiarity on the part of the Greeks with
Egyptian methods of calculation is well attested. Thus (1) Psellus
in the letter published by Tannery® speaks of “the method
of arithmetical calculations used by the Egyptians, by which
problems in analysis are handled” (3 xa7 Alyvwrriovs Tdv
aplbudy pébodos, 8 ns olkovouelrar T4 Kkatd THV dvalvrieyy
mpofAjuara); the details which he goes on to give respecting
the technical terms for different kinds of numbers, including the
powers of the unknown quantity, in use among the Egyptians
are doubtless taken from Anatolius. (2) The scholiast to Plato’s
Charmides 165 E may be drawing on the same source when he
says that “parts of AoytoTirs (the science of calculation) are the
so-called Greek and Egyptian methods in multiplications and
divisions, and the additions and subtractions of fractions....The
aim of it all is the service of common life and utility for contracts,
though it seems to deal with things of sense as if they were
perfect or abstract” (3) Plato himself, in the Laws? says that
free-born boys should, as is the practice in Egypt, learn, side by
side with reading, simple mathematical calculations adapted to their
age, which should be put into a form such as to give amusement
and pleasure as well as instruction; eg. there should be different
distributions of such things as apples, garlands, etc., different
arrangements of numbers of boysin contests of boxing or wrestling,
illustrations by bowls of different metals, gold, copper, silver, etc,,
and simple problems of calculation of mixtures; all of which are
useful in military and civil life and “in any case make men more
useful to themselves and more wide-awake.”

! Dioph. 11. pp. 37-42. 2 Laws, V1l. 819 A-C.
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The Egyptian calculations here in point (apart from their
method of writing and calculating in fractions, which differed
from that of the Greeks in that the Greeks worked with ordinary
fractions, whereas the Egyptians separated fractions into sums
of submultiples, with the exception of § which was not decomposed)
are the Aawu-calculations. Haxn, meaning a /keap, is the term used
to denote the unknown quantity, and the calculations in terms
of it are equivalent to the solutions of simple equations with one
unknown quantityl. Examples from the Papyrus Rhind?® corre-
spond to the following equations:

r+x=19,
fr+ir+ir+r=33
(x+32) -}z +32) = 10,

Before leaving the Egyptians, it is right to mention their
anticipation, though in an elementary form, of a favourite method
of Diophantus, that of the “false supposition” or “regula falsi”
as it is sometimes called. An arbitrary assumption is made as to
the value of the unknown, and the value is afterwards corrected
by a comparison of the result of substituting the wrong value in
the original expression with the actual fact. Two instances
mentioned by Cantor® may be given. The first, taken from the
Papyrus Rhind, is the problem of dividing 100 loaves among five
persons in numbers forming an arithmetical progression and such
that one-seventh of the sum of the first three shares is equal to
the sum of the other two. If a+44d, a+3d, a+2d, a+d, a
are the shares, we have

3¢ +9d=7 (2a+4d),
or d = 5}a.
Ahmes merely says, without explanation, “ make the difference,
as it is, 5§3,” and then, assuming @=1, writes the series 23, 17},
12, 6}, 1. The addition of these gives 60, and 100 is 1§ times 60.
Ahmes says simply “multiply 1% times” and thus gets the correct
values 384, 294, 20, 10} }, 13. The second instance (taken from
the Berlin Papyrus 6619) is the solution of the equations
2+ 3% = 100,

x:iy=1:4 or y=43x

* For a complete account of the subject the reader is referred to Moritz Cantor’s
Geschichte der Mathematik, 13. Chapter 11., especially pp. 74-81.

2 Eisenlohr, Ein mathematisches Handbuck der alten Agypter (Papyrus Rhind des

British Museum), Leipzig, 1877.
3 Geschichte der Math. 15. pp. 78-9 and p. 95.
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x is first assumed to be 1, and x*+43* is then found to be 25/16.
In order to make 100, 25/16 has to be multiplied by 64 or 8. The
true value of x is therefore 8 times 1, or 8.

The simple equations solved in the Papyrus Rhind are just the
kind of equations of which we find numerous examples in the
arithmetical epigrams included in the Greek Anthology. Most
of these appear under the name of Metrodorus, a grammarian,
who probably lived about the time of the Emperors Anastasius I.
(491-518 A.D.) and Justin I (518-527 A.D.). They were obviously
only collected by Metrodorus, from ancient as well as more recent
sources ; none of them can with certainty be attributed to Metro-
dorus himself. Many of the epigrams (46 in number) lead to
simple equations, with one unknown, of the type of the /Zau-
equations, and several of them are problems of dividing a number
of apples or nuts among a certain number of persons, that is
to say, the very type of problem alluded to by Plato. For
example, a number of apples has to be determined such that, if
four persons out of six receive one-third, one-eighth, one-fourth
and one-fifth respectively of the total number of apples, while the
fifth person receives ten apples, there remains one apple as the
share of the sixth person, ze

jr+ir+irt+ir+ 104 1=x

We are reminded of Plato’s allusion to problems about bowls
(¢pedrar) of different metals by two problems (4#zkol. Palat. X1v.
12 and 50) in which the weights of bowls have to be found. We
can now understand the allusions of Proclus® and the scholiast
on Charmides 165 E to uniitac and ¢eatirac apifuoi, the adjectives
being respectively formed from p7jlov, an apple, and ¢udry, a
bowl. It is clear from Plato’s allusions that the origin of such
simple algebraical problems dates back, at least, to the fifth
century B.C.

I have not thought it worth while to reproduce at length the
problems contained in the Anthology? but the following is a
classification of them. (1) Twenty-three are simple equations
containing one unknown and of the type shown above; one of
these is the epigram on the age of Diophantus and incidents
in his life (x1v. 126). (2) Twelve more are easy simultaneous

1 Proclus, Comment. on Eucl. I., ed. Friedlein, p. 40, 5.

? They are printed in Greek, with the scholia, in Tannery’s edition of Diophantus

(11. pp. 4372 and x), and they are included in Wertheim’s German translation of
Diophantus, pp. 331-343.

H. D. 8
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equations containing two unknowns, and of the same sort as
Diophantus 1. 1-6; or, of course, they can be reduced to a simple
equation with one unknown by means of an easy elimination.

One other (XIV. 51) gives simultaneous equations in three un-
knowns

r=y+2 y=s+ 2, =104~
3!.7 3, 3’

and one (XIV. 49) gives four equations in four unknowns
X+y=40, x+2=45, x+u=36, x+y+5+u=060.

With these may be compared Diophantus I. 16-21. (3) Six more
are problems of the usual type about the filling of vessels by pipes:
e£. (XIV. 130) one pipe fills the vessel in one day, a second in two,
and a third in three; how long will all three running together
take to fill it? Another about brickmakers (X1V. 136) is of the
same sort.

The Anthology contains (4) two indeterminate equations of
the first degree which can be solved in positive integers in an
infinite number of ways (X1v. 48 and 144); the first is a distribution
of apples satisfying the equation x —3y=y, where y is not less
than 2, and the original number of apples is 32 ; the second leads
to the following three equations between four unknown quantities :

X+y=x+,
x=2.71)
4’1=3J’x

the general solution of which is x = 4%, y = %, 4, = 3%, . = 2k. These
very equations, made however determinate by assuming that
x+y=x+y =100, are solved in Diophantus 1. I2.

We mentioned above the problem in the Anthology (XIV. 49)
leading to the following four simultaneous linear equations with
four unknown quantities, )

X+y=a,
x+z=0,
rtu=c

r+y+ztu=d.

The general solution of any number of simultaneous linear
equations of this type with the same number of unknown quantities
was given by Thymaridas, apparently of Paros, and an early
Pythagorean. He gave a rule, &podos, or method of attack (as
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Tamblichus}, our informant, calls it) which must have been widely
known, inasmuch as it was called by the name of the éwrdvOnpua,
“flower” or “bloom,” of Thymaridas. The rule is stated in general
terms, but, though no symbols are used, the content is pure
algebra. Thymaridas, too, distinguishes between what he calls
aopiorov, the undefined or unknown quantity, and the dpiapévor,
the definite or known, therein anticipating the very phrase of
Diophantus, 7Afjfos povddwr ddpiarov, “an undefined number of
units,” by which he describes his dpefués or 2. Thymaridas’ rule,
though obscurely expressed, states in effect that, if there are #»
equations between z unknown quantities z, x,, ;... 2, of the

following form,
r+x=a,

X+ X =apn,,
T+ttt xa, =,
then the solution is given by

=(a1+a«,+...+a,,_l)—s
n—2 i

x

Iamblichus goes on to show that other types of equations can
be reduced to this, so that the rule does not leave us-in the lurch
(o0 mapérer) in those cases either. Thus we can reduce to
Thymaridas’ form the indeterminate problem represented by the
following three linear equations between four unknown quantities :

r+y=a(z+u),

x+z=0(u+y),

rtu=c(y+2).
From the first equation we obtain

r+y+etu=(at1)(z+u),

from which it follows that, if x, », 2, » are all to be integers,
x4y +z+» must contain 2+ 1 as a factor. Similarly it must
contain 4+ 1 and ¢+ 1 as factors.

Suppose now that x+ y+s+#=(a+1)(6+1)(c+ 1). There-
fore, by means of the first equation, we get

@+ (143) =@+ D@+ D+,

1 Tamblichus, /n Nicomacki arithmeticam introductionem (ed. Pistelli), pp. 62,
18-68, 26.

8—2
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or z+y=a@+1)(ct+ 1)
Similarly x+a=b(c+1)(a+1),
r+u=c(a+1)(6+1),
and the equations are in the form to which Thymaridas’ rule is
applicable.
Hence, by that rule,

x=“(b+ D+ +...—(@+1)(6+1)(c+ 1).
2 .

In order to ensure that x may always be integral, it-is only
necessary to assume
r+y+ztu=2(@+1)(G+1)(c+1)
The factor 2 is of course determined by the number of un-

knowns. If there are 7» unknowns, the factor to be put in place
of 2is n—2.

Iamblichus has the particular case corresponding to a=2,
b=3,c=4. He goes on to apply the method to the equations

%
x+y=z (z+u),
x+z=’—:;(u+y),

x+u=§ (y +2)

for the case where £/l/=3,m/n=4%, p/g=3.

Enough has been said to show that Diophantus was not the
inventor of Algebra. Nor was he the first to solve indeterminate
problems of the second degree.

Take, first, the problem of dividing a square number into two
squares (Diophantus II. 8), or of finding a right-angled triangle
with sides in rational numbers. This problem was, as we learn
from Proclus’, attributed to Pythagoras, who was credited with
the discovery of a general formula for finding such triangles which
may be shown thus:

n? — I 2 ”2+ I 2
n"+( 2 ) =(A 54)’
where # is an odd number. Plato again is credited, according
to the same authority, with another formula of the same sort,
(20 + (72— 1P =(n*+ 1%
Y Comment. on Euclid, Book I. pp. 428, 7sqq.
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Both these formulae are readily connected with the geometrical
proposition in Eucl. II. 5, the algebraical equivalent of which may

be stated as
(——) = (__ ) = ab.
2 2

The content of Euclid Book 1I. is beyond doubt Pythagorean, and
this way of stating the proposition quoted could not have escaped
the Pythagoreans. If we put 1 for & and the square of any odd
number for 2, we have the Pythagorean formula; and, if we put
a=2n? b=2, we obtain Plato’s formula. Euclid finds a more
general formula in Book X. (Lemma following X. 28). Starting
with numbers # = ¢ + & and v = ¢ — 4, so that
wy=c®— B,
Euclid points out that, in order that v may be a square, # and v
must be “similar plane numbers” or numbers of the form g2,
mng®. Substituting we have
mnp® + mnq?)’_ (mn_ﬁ’ = mnq’)’
2 2

g = (
But the problem of finding right-angled triangles in rational
numbers was not the only indeterminate problem of the second
degree solved by the Pythagoreans. They solved the equation
22'=pi=+1
in such a way as to prove that there are an infinite number of
solutions of that equation in integral numbers. The Pythagoreans
used for this purpose the system of “side-” and “diagonal-”
numbers?, afterwards fully described by Theon of Smyrna2 We
begin with unity as both the first “side” and the first “ diagonal ”;
thus
a=1d=1.
We then form (@, d.), (a5, &), etc., in accordance with the following
law,
a=a,+d, d,=2a,+4d,;
a;=a,+d,, dy=2a,+4d,;
and so on. Theon states, with reference to these numbers, the
general proposition that
di?=2a," 1 1,
and observes that (1) the signs alternate as successive @’s and a’s
1 See Proclus, /n Platonis rempublicam commentarii (Teubner, Leipzig), Vol. 11.

¢. 27, P. 27, 11-18.
2 Theon of Smyrna, ed. Hiller, pp. 43, 44-
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are taken, &?—2a? being equal to —1, 4?—22? equal to+1,
dy — 2a equal to — 1 and so on, (2) the sum of the squares of a//
the &’s will be double of the sum of the squares of @/ the &’s. For
the purpose of (2) the number of successive terms in each series,
if finite, must of course be even. The algebraical proof is easy.

d?— 20 = (2ap + dp P — 2 (@ + dp

I

Ayl
=—(dn-1* — 200")
=+ (dps’ — 2a5-5),
and so on, while &; - 24, =—1. Proclus tells us that the property

was proved by means of the theorems of Eucl IIL 9, 10, which
are indeed equivalent to
(22 +yy —2(@+y)y =22 ="

Diophantus does not particularly mention the indeterminate
equation 22— 1 =32 still less does he mention “side-” and
“diagonal-” numbers. But from the Lemma to VI. 15 (quoted
above, p. 69) it is clear that he knew how to find any number of
solutions when one is known. Thus, seeing that x=1, y =1 is
one solution, he would put

2 (1 +x)—1=a square
—(pr—1y say,
whence r=(4+22)[(#*— 2).

Take the value p=2, and we have x=4, or ¥+1=5; and
2.52~1=49=7% Putting x+5 in place of , we find a still
higher value, and so on. 5

In a recent paper Heiberg has published and translated, and
Zeuthen has commented on, still further Greek examples of in-
determinate analysis’. They come from the Constantinople MS.
(probably of 12th c.) from which Schone edited the Metrica of
Heron. The first two of the thirteen problems had been published
before (though in a less complete form)?; the others are new.

The first bids us find two rectangles such that the perimeter
of the second is three times that of the first, and the area of the
first is three times that of the second (the first of the two con-
ditions is, by some accident, omitted in the text). The number 3

1 Bibliotheca Mathematica, Vill, 190%7-8, pp. 118-134.

2 Hultsch’s Heron, Geeponica, 78, 79. The two problems are discussed by Cantor,
Agrimensoren, p. 62, and Tannery, Mém. de la soc. des sc. de Bordeaux, 1v4, 1882.
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is of course only an illustration, and the problem is equivalent to
the solution of the equations

utv=mn (x +},) ‘
e TR e LS ik e e (1);
the solution given in the text is equivalent to
x=2m—1, y=2n
u=n(4n*—2), 7,=”} .................. (2).

Zeuthen suggests that this solution may have been arrived at
thus. As the problem is indeterminate, it would be natural to
make trial of some hypothesis, e.¢. to put v=7. It would follow

from the first equation in (1) that # is a multiple of », say #z. We
have then

r+y=1+3
xy =n*z,
whence ry=n*(x+y)—13,
or & —n°) (y—n)=n*(n* — 1).

An obvious solution of this is
r—w=m—1, y—1=n’

The second problem is equivalent to the solution of the
equations

r+y=u+v .
xy=n.m’} ........................ (1);
and the solution given in the text is
T+ =u+V=m—1 cereiiieiinnanns (2),
u=n—1, v=n(n*—1)
x=”2_l’y=”’(”_l)} ................. (3)-

In this case trial may have been made of the assumption
v=nx, y=rnu,
when the first equation in (1) would give
(n—1)x=0"—1)u,
a solution of which is x=2—1, u=n—1.

The fifth problem is of interest in one respect. We are asked
to find a right-angled triangle (in rational numbers) with area
of 5 feet. We are told to multiply § by some square containing 6
as a factor, eg. 36. This makes 180, and this is the area of the
triangle (9, b, #1). Dividing each side by 6, we have the triangle
required. The' author, then, is aware of the fact that the area
of a right-angled triangle with sides in whole numbers is divisible
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by 6. If we take the Euclidean formula for a right-angled triangle,
thus making the sides
mﬂ W, ”‘Z mﬂ + ”2
) R )
2 2

a.mn, a.

where @ is any number, and 2, » are numbers which are both odd
or both even, the area is

2" (m —n)(m + n)

4

and, as a matter of fact, the numerator mn (m —#)(m +n) is
divisible by 24, as was proved later (for another purpose) by
Leonardo of Pisal. “ There is no sign that Diophantus was aware
of the proposition ; this however may be due to the fact that he
does not trouble as to whether his solutions are integral, but is
satisfied with »ational results.

The last four problems (numbered 10 to 13) are of great
interest. They are different particular cases of one problem, that
of finding a rational right-angled triangle such that the numerical
sum of its area and all its three sides is a given number. The
author’s solution depends on the following formulae, where a, &
are the perpendiculars, and ¢ the hypotenuse, of a right-angled
triangle, S its area, » the radius of its inscribed circle, and
s=f(a+b+0):

S=rs=%ab r+s=a+6b,c=s—7r.

(The proof of these formulae by means of the usual figure, that
used by Heron to prove his formula for the area of a triangle
in terms of its sides, is easy.)

Solving the first two equations, in order to find @ and 4, we
have

@) 7+ T {7+ )~ 8rs}
b} . 2

which formula is actually used by the author for finding @ and &.
The method employed is to take the sum of the area and the three
sides S + 25, separated into its two obvious factors s (# + 2), to put
s (#+2)=A (the given number), and then to separate 4 into
sunitable factors to which s and #»+ 2 may be equated. They must
obviously be such that s7, the area, is divisible by 6. To take the
first example where 4 is equal to 280: the possible factors are

1 Seritti, ed. B. Boncom.pagni, 11. (1862), p. 264. Cf. Cantor, Gesck. d. Math. 11y,
Pp- 40
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2% 140, 4X70, §%56, 7x40, 8x35 10x28 14x%x20 The
suitable factors in this case are » +2 = 8, s = 35, because 7 is then
equal to 6, and 7s is a multiple of 6.
The author then says that

_6+35-V{(6+35—8.6.35} _41—1_ .
s ,

2

AL

=21
2 >

and c=35—6=29.

The triangle is therefore (20, 21, 29) in this case. The
triangles found in the other cases, by the same method, are
(9, 40, 41), (8, 15, 17) and (9, 12, 15).

Unfortunately there is no guide to the date of the problems
just given. The form, however, cannot be that in which the
discoverer or discoverers of the methods indicated originally
explained those methods. The probability is that the original
formulation of the most important of the problems belongs to
the period between Euclid and Diophantus. This supposition best
agrees with the fact that the problems include nothing taken from
the great collection in the Arsthmetica. On the other hand, it is
strange that none of the seven problems above mentioned is found
in Diophantus. The five of them which relate to rational right-
angled triangles might well have been included by him ; thus he
finds rational triangles such that the area plus or minus one of the
perpendiculars is a given number, but not the rational triangle
which has a given area; and he finds rational triangles such that
the area plus or minus the sum of two sides is a given number,
but not the rational triangle such that the sum of the area and
the three sides is a given number. The omitted problems might,
it is true, have come in the lost Books; but, on the other hand,
Book VI is the place where we should have expected to find
them. Nor do we find in the above problems any trace of
Diophantus’ peculiar methods.

Lastly, the famous Cattle-Problem attributed to Archimedes?
has to be added to the indeterminate problems propounded before
Diophantus’ time. According to the heading prefixed to the
epigram, it was communicated by Archimedes to the mathe-
maticians at Alexandria in a letter to Eratosthenes. The scholiast

! Archimedes, ed. Heiberg, Vol. II. p. 450 sqq-
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on Charmides 165E also refers to the problem “called by Archi-
medes the Cattle-Problem.” Krumbiegel, who discussed the
arguments for and against the attribution to Archimedes, con-
cluded apparently that, while the epigram can hardly have been
written by Archimedes in its present form, it is possible, nay
probable, that the problem was in substance originated by
Archimedes’, Hultsch? has a most attractive suggestion as to
the occasion of it. It is known that Apollonius in his éxvrérxior
had calculated an approximation to the value of = closer than
that of Archimedes, and he must therefore, have worked out more
difficult multiplications than those contained in the Measurement
of a circle. - Also the other work of Apollonius on the multipli-
cation of large numbers, which is partly preserved in Pappus, was
inspired by the Sand-reckoner of Archimedes; and, though we
need not exactly regard the treatise of Apollonius as polemical,
yet it did in fact constitute a criticism of the earlier book. That
Archimedes should then reply with a problem involving such a
manipulation of immense numbers as would be difficult even for
Apollonius is not altogether outside the bounds of possibility. And
there is an unmistakable vein of satire in the opening words of
the epigram, “ Compute the number of the oxen of the Sun, giving
thy mind thereto, if thou hast a share of wisdom,” in the tran-
sition from the first part to the second, where it is said that
ability to solve the first part would entitle one to be regarded
as “not unknowing nor unskilled in numbers, but still not yet
to be counted among the wise,” and again in the.last lines.
Hultsch concludes that in any case the problem is not much
later than the time of Archimedes and dates from the beginning
of the second century B.C. at the latest.

I have reproduced elsewhere?, from Amthor, details regarding
the solution of the problem, and I need do little more than state
here its algebraical equivalent. Eight unknown quantities have
to be found, namely, the numbers of bulls and cows respectively
of each of four colours (I use large letters for the bulls and small
letters for the cows). The first part of the problem connects the
eight unknowns by seven simple equations; the second part adds
two more conditions.

1 Zeitschrift fiir Math. u. Physik (Hist. litt. Abtheilung), xxv. (1880), p. 121 sq.
Amthor added (p. 153 sq.) a discussion of the problem itself.

2 Art. Archimedes in Pauly-Wissowa’s Real- Encyclopidie, 11. 1, pp. 5345 535.

3 The Works of Archimedes, pp. 319-326.
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The value of W would be a number containing 206545
digits.

Such are the very few and scattered particulars which we
possess of problems similar to those of Diophantus solved or
propounded before his time. They show indeed that the kind of
problem was not invented by him, but on the other hand they
show little or no trace of anything like his characteristic alge-
braical methods. In the circumstances, and in default of discovery
of fresh documents, the question how much of his work represents
original contributions of his own to the subject must remain a
matter of pure speculation. It is pretty obvious that one man
could not have been the author of all the problems contained in
the six Books. There are also inequalities in the work ; some
problems are very inferior in interest to the remainder, and some
solutions may be assumed to be reproduced from other writers
of less calibre, since they reveal none of the mastery of the subject
which Diophantus possessed. Again, it seems probable that the
problem V. 30, which is exceptionally in epigrammatic form, was
taken from someone else. The Arithmetica was no doubt a
collection, much in the same sense as Euclid’s Elemnents were. And
this may be one reason why so little trace remains of earlier
labours in the same field. It is well known that Euclid’s Elements
so entirely superseded the works of the earlier writers of Elements
(Hippocrates of Chios, Leon and Theudius) and of the great
contributors to the body of the Elements, Theaetetus and Eudoxus,
that those works have disappeared almost entirely. So no doubt
would Diophantus’ work supersede, and have the effect of con-
signing to oblivion, any earlier collections of problems of the
same kind. But, if it was a compilation, we cannot doubt that
it was a compilation in the best sense, therein resembling Euclid’s
Elements; it was a compilation by one who was a master of the
subject, who took account of and assimilated all the best that had
been written upon it, arranged the whole of the available material
in due and progressive order, but also added much of his own, not
only in the form of new problems but also (and even more) in the
mode of treatment, the development of more general methods, and
so on.

It is perhaps desirable to add a few words on the previous
history of the theory of polygonal numbers. The theory certainly
goes back to Pythagoras and the earliest Pythagoreans. The
triangle came first, being obtained by first taking 1, then adding
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2 to it, then 3 to the sum; each successive number would be
represented by the proper number of dots, and, when each number
was represented by that number of dots arranged symmetrically
under the row representing the preceding number, the triangular
form would be apparent to the eye, thus:

Next came the Pythagorean discovery of the fact that a similar
successive addition of odd numbers produced
successive square numbers, the odd numbers
being on that account called gnomons, and again
the process was shown by dots arranged to re-
present squares. The accompanying figure shows
the successive squares and gnomons.

Following triangles and squares came the figured numbers
in which the “gnomons,” or the numbers added to make one
number of a given form into the next larger of the same form,
were numbers in arithmetical progression starting from 1, but with
common difference 3, 4, 5, etc., instead of 1, 2. Thus, if the
common difference is 3, so that the successive numbers added to
1 are 4, 7, 10, etc, the number is a pentagonal number, if the
common difference is 4 and the gnomons 3, 9, 13, etc,, the number
is a hexagonal number, and so on. Hence the law that the
common difference of the gnomons in the case of a #-gon is
72— 2.

Perhaps these facts had already been arrived at by Philippus
of Opus (4th c. B.C), who is said to have written a work on
polygonal numbers’. Next Speusippus, nephew and successor of
Plato, wrote on Pythagorean Numbers, and a fragment of his
book survives®, in which linear numbers, polygonal numbers,
triangles and pyramids are spoken of: a fact which leaves no
room for doubt as to the Pythagorean origin of all these con-
ceptions®.

Hypsicles, who wrote about 170 B.C, is twice mentioned by
Diophantus as the author of a “ definition” of a polygonal number,

! Buoypdpot, Vitarum scriptores Graeci minores, ed. Westermann, 1845, p. 448.

3 Theologumena arithmeticac (ed. Ast), 1817, pp. 61, 62; the passage is translated with
notes by Tannery, Pour Phistoire de la science kelléne, pp. 386-390.

3 Cantor, Geschichte der Mathematik, 1y, p. 249.
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which is even quoted verbatim!. The definition does not mention
any polygonal number beyond the pentagonal; but indeed this
was unnecessary : the facts about the triangle, the square and the
pentagon were sufficient to enable Hypsicles to pass to a general
conclusion. The definition amounts to saying that the nth a-gon
(1 counting as the first) is

tn{24+(n—1)(a-2).

Theon of Smyrna® Nicomachus® and Iamblichus* all devote
some space to polygonal numbers. The first two, who flourished
about 100 A.D., were earlier than Diophantus, and are accordingly
of interest here. Besides a description of the successive polygonal
numbers, Theon gives the theorem that two successive triangular
numbers added together give a square. That is,

(n — I)1z+7i(7z - I)=722
2 2

The fact is of course clear if we divide a square
into two triangles as in the figure.

Nicomachus gave various rules for transformmg triangles into
squares, squares into pentagons, etc.

1. If we put two consecutive triangles together we get a square
(as in Theon’s theorem).

2. A pentagon is obtained from a square by adding to it a
triangle the side of which is 1 less than that of the square;
similarly a hexagon from a pentagon by adding a triangle the side
of which is 1 less than that of the pentagon; and so on.

In fact,

Infz+(n=1)(@-2} +§ (=) n=}nl2+@—1){@+1)-2))
Next Nicomachus sets out the first triangles, squares, pentagons,
hexagons and heptagons in a diagram thus:

Triangles TR OENTON SIS 2T 28 S 136 8 A5l )5
Squares U SO N GEEDGRE 36 g 6.4 181 100
PentagonsiiNeiiZeissil 12 = 30880355 Sor ' 70 lga 117 - 145
Hexagons ... 1 6 15 28 45 66 91 120 153 IQO
Heptagons... 1 7 18 34 55 81 112 148 189 235
and observes that
1 Dioph. 1. pp. 470-472-
2 Expositio rerum thematicarum ad legend, Plat utilium, ed. Hiller,

PP. 31-40.
8 Introductio arithmetica, ed. Hoche, 11. 8~12, pp. 87-99.
4 In Nicomacki arithmeticam introd., ed. Pistelli, pp. 58-61, 68-72.









THE ARITHMETICA

BOOK I

PRELIMINARY

Dedication.

“Knowing, my most esteemed friend Dionysius, that you are
anxious to learn how to investigate problems in numbers, I have
tried, beginning from the foundations on which the science is
built up, to set forth to you the nature and power subsisting in
numbers.

“Perhaps the subject will appear rather difficult, inasmuch as
it is not yet familiar (beginners are, as a rule, too ready to despair
of success); but you, with the impulse of your enthusiasm and
the benefit of my teaching, will find it easy to master; for
eagerness to learn, when seconded by instruction, ensures rapid
progress.”

After the remark that “all numbers are made up of some
multitude of units, so that it is manifest that their formation is
subject to no limit,” Diophantus proceeds to define what he calls
the different “species” of numbers, and to describe the abbreviative
signs used to denote them. These “species” are, in the first
place, the various powers of the unknown quantity from the second
to the sixth inclusive, the unknown quantity itself, and units.

Definitions.

A square (=x?) is 8vwapms (“ power "), and its sign is a 4 with ¥V
superposed, thus 4%,

A cube (=x°) is k¥fBos, and its sign K¥.

A square-square (= x%) is SuvapoSivauis’, and its sign is 47 4.

A square-cube (= x°) is SuvapokvBos, and its sign AKT.

A cube-cube (= x°) is kvBoxvBos, and its sign K K.

! The term dvvauodvramus was already used by Heron (Aetrica, ed. Schine, p. 48,
11, 19) for the fourth power of a side of a triangle.

H. D. 9
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“It is,” Diophantus observes, “from the addition, subtraction
or multiplication of these numbers or from the ratios which they
bear to one another or to their own sides respectively that most
arithmetical problems are formed” ; and “each of these numbers...
is recognised as an element in arithmetical inquiry.”.

“But the number which has none of these characteristics, but
merely has in it an indeterminate multitude of wunits (mwAffos
uovadwy dopiotov) is called dplbucs, number) and its sign is
s[=#}"

“And there is also another sign denoting that which is in-
variable in determinate numbers, namely the unit, the sign being

M with o superposed, thus M

Next follow the. definitions of the reciprocals, the names of
which are derived from the names of the corresponding species
themselves.

Thus
from dp:fuds [x] we derive the term dpifuoativ [= 1/x]
»  Stwaus [£7] - e Suvapoatéy [= 1/x?]
»  &UBos [x*] . A xvBooTov [= 1/x%]
» Ouvapodivaus [x4] ,, » Suvapodvvauoatov [= 1/x4]
»  SvvapdrvBos [2°] ,, SvvapoxvBootiv [= 1/x°]
»  KkuBdkvBoes [x°] 2 . xvBokvBooTov [= 1/x%],

and each of these has the same sign as the corresponding original
species, but with a distinguishing mark which Tannery writes in
the form X above the line to the right.

Thus 4¥X = 1/ just as yX=1.

Sign of Subtraction (minus).

“A minus multiplied by a minus makes a plus’; a minus
multiplied by a plus makes a minus; and the sign of a minus is a
truncated Y turned upside down, thus N.”

Diophantus proceeds: “It is well that one who is beginning
this study should have acquired practice in the addition, subtraction
and multiplication of the various species. He should know how
to add positive and negative terms with different coefficients to

! The literal rendering would be “ A wanting multiplied by a wanting makes a
forthcoming.” The word corresponding to minus is Netyus (“ wanting ”’): when it is
used exactly as our msnus is, it is in the dative Nefye, but there is some doubt whether
Diophantus himself used this form (cf. p. 44 above). For the probable explanation of

the sign, see pp. 42-44. The word for ‘‘forthcoming” is $wapes, from dwdpxw, to exist.
Negative terms are Aelwovra €ldn, and positive dwdpyxovra.
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other terms?, themselves either positive or likewise partly positive
and partly negative, and how to subtract from a combination of
positive and negative terms other terms either positive or likewise
partly positive and partly negative.

“Next, if a problem leads to an equation in which certain
terms are equal to terms of the same species but with different
coefficients, it will be necessary to subtract like from like on both
sides, until one term is found equal to one term. If by chance
there are on either side or on both sides any negative terms, it will
be necessary to add the negative terms on both sides, until the
terms on both sides are positive, and then again to subtract like
from like until one term only is left on each side.

“This should be the object aimed at in framing the hypotheses
of propositions, that is to say, to reduce the equations, if possible,
until one term is left equal to one term ; bur I will show you later
how, in the case also where two terms ave left equal to one term, such
a problem is solved.”

Diophantus concludes by explaining that, in arranging the
mass of material at his disposal, he tried to distinguish, so far as
possible, the different types of problems, and, especially in the
elementary portion at the beginning, to make the more simple lead
up to the more complex, in due order, such an arrangement being
calculated to make the beginner’s course easier and to fix what
he learns in his memory. The treatise, he adds, has been divided
into thirteen Books.

PROBLEMS

1. To divide a given number into two having a given
difference.
Given number 100, given difference 40.
Lesser number required #. Therefore
2% + 40 = 100,
x=30.
The required numbers are 70, 30.
2. To divide a given number into two having a given ratio.
Given number 60, given ratio 3 : 1.
Two numbers #, 3x. Therefore x = 135.
The numbers are 45, 15.

1 eldos, ““species,” is the word used by Diophantus throughout.

9—2
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3. To divide a given number into two numbers such that one
is a given ratio of the other p/us a given difference’.
Given number 80, ratio 3: 1, difference 4.
Lesser number x. Therefore the larger is 3+ + 4, and
4x + 4= 80, so that z = I9.
The numbers are 61, 19.

4. To find two numbers in a given ratio and such that their
difference is also given.
Given ratio § : 1, given difference 20.
Numbers 5z, . Therefore 4xr = 20, x = 35, and
the numbers are 25, 5.

5. To divide a given number into two numbers such that given
fractions (not the same) of each number when added together
produce a given number.

Necessary condition. The latter given number must be such
that it lies between the numbers arising when the given fractions
respectively are taken of the first given number.

First given number 100, given fractions } and 1, given
sum of fractions 30.
Second part 52. Therefore first part = 3 (30 —x).
Hence g0+ 2x =100, and x=35.
The required parts are 75, 25.

6. To divide a given number into two numbers such that a
given fraction of the first exceeds a given fraction of the other
by a given number.

Necessary condition. The latter number must be less than that
which arises when that fraction of the first number is taken which
exceeds the other fraction.

Given number 100, given fractions } and } respectively,
given excess 20.
Second part 62.  Therefore the first part is 4 (x + 20).
Hence 102 + 80= 100, x = 2, and
the parts are 88, 12.

1 Literally ““to divide an assigned number into two in a given ratio and difference (é»
Noyp xal bwepoxi T4 dofeioy).” The phrase means the same, though it is not so clear, as
Euclid’s expression (Data, Def. 11 and passim) 308évre pelfwr 7 év Noyp. According to
Euclid’s definition a magnitude is greater than a magnitude *“by a given amount (more)
than in a (certain) ratio” when the remainder of the first magnitude, after subtracting
the given amount, has the said ratio to the second magnitude. This means that, if x, y
are the magnitudes, & the given amourt, and /4 the ratio, x ~d=4y or x=#y +d.
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7. From the same (required) number to subtract two given
numbers so as to make the remainders have to one another a
given ratio.

Given numbers 100, 20, given ratio 3: I.
Required number ». Therefore x — 20 = 3 (¥ — 100), and
r =140.

8. To two given numbers to add the same (required) number so
as to make the resulting numbers have to one another a given ratio.
Necessary condition. The given ratio must be less than the
ratio which the greater of the given numbers has to the lesser.
Given numbers 100, 20, given ratio 3:1.
Required number x. Therefore 3z + 60 =z + 100, and
X =20.

9. From two given numbers to subtract the same (required)
number so as to make the remainders have to one another a given
ratio.

Necessary condition. The given ratio must be greater than the
ratio which the greater of the given numbers has to the lesser.

Given numbers 20, 100, given ratio 6: I.
Required number . Therefore 120 — 62 = 100 — x, and
b =ta s

10. Given two numbers, to add to the lesser and to subtract
from the greater the same (required) number so as to make the
sum in the first case have to the difference in the second case
a given ratio.

Given numbers 20, 100, given ratio 4 : I.
Required number ». Therefore (20 +x)=4 (100 — x), and
x=176.

11. Given two numbers, to add the first to, and subtract the
second from, the same (required) number, so as to make the
resulting numbers have to one another a given ratio.

Given numbers 20, 100, given ratio 3 : 1.
Required number x. Therefore 3+ — 300 =x+ 20, and
x = 160.

12. To divide a given number twice into two numbers such
that the first of the first pair may have to the first of the second
pair a given ratio, and also the second of the second pair to the
second of the first pair another given ratio.
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Given number 100, ratio of greater of first parts to lesser
of second 2:1, and ratio of greater of second parts
to lesser of first parts 3: 1. -

x lesser of second parts.

The parts then are

2x} and 300—61’}.
100 — 2% x
Therefore 300 — 5x = 100, ¥ = 40, and
the parts are (80, 20), (60, 40).

13. Todivide a given number thrice into two numbers such that
one of the first pair has to one of the second pair a.given ratio,
the second of the second pair to one of the third pair another
given ratio, and the second of the third pair to the second of the
first pair another given ratio.

Given number 100, ratio of greater of first parts to lesser
of second 3:1, of greater of second to lesser of
third 2:1, and of greater of third to lesser of
first 4:1.

x lesser of third parts.

Therefore greater of second parts = 2z, lesser of second
= 100 — 2%, greater of first = 300 — 6z.

Hence lesser of first =6x— 200, so that greater of third
= 24x — 800.

Therefore 25x — 800 = 100, ¥ = 36, and
the respective divisions are (84, 16), (72, 28), (64, 36).

14. To find two numbers such that their product has to their
sum a given ratio. [One is arbitrarily assumed.]
Necessary condition. The assumed value of one of the two
must be greater than the number representing the ratio.
Ratio 3 : 1, x one of the numbers, 12 the other (> 3).
Therefore 124 = 32 + 36, ¥ = 4, and
the numbers are 4, 12.

15. To find two numbers such that each after receiving from
the other a given number may bear to the remainder a given

ratio.
Let the first receive 30 from the second, the ratio being

then 2 : 1, and the second 50 from the first, the ratio
being then 3:1; take x + 30 for the second.

1 Literally ‘the number homonymous with the given ratio.”
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Therefore the first = 22 — 30, and
(x + 80) = 3 (2x — 80o).
Thus » = 64, and
the numbers are 98, g4.

16. To find three numbers such that the sums of pairs are
given numbers.
Necessary condition. Half the sum of the three given numbers
must be greater than any one of them singly.
Let (1) +(2) = 20, (2) +(3) = 30, (3) + (1) = 40.
x the sum of the three. Therefore the numbers are
X —30, ¥—40, x—20.
The sum x = 2xr — 9o, and xr=45.
The numbers are 135, 5, 25.

17. To find four numbers such that the sums of all sets of three
are given numbers.
Necessary condition. One-third of the sum of the four must be
greater than any one singly.
Sums of threes 22, 24, 27, 20 respectively.
x the sum of all four. Therefore the numbers are
xX—22, ¥—24, ¥—2], ¥-—20.
Therefore 42 —93 =x, x = 31, and
the numbers are g, 7, 4, 11.

18. To find three numbers such that the sum of any pair
exceeds the third by a given number.
Given excesses 20, 30, 40.
2z the sum of all three.
We have (1) +(2) = (3) + 20.
Adding (3) to each side, we have: twice (3) + 20=2x%, and
(3)=x-—10.
Similarly the numbers (1) and (2) are x—15, x— 20
respectively.
Therefore 3r — 45 = 2x, x=45, and
the numbers are 30, 25, 35.
[Otherwise thus'. As before, if the third number (3) is z,
(1) +(2) =x + 20.
Next, if we add the equations
(0+ (@~ (9 =)
(@)+@3)—(1=30])’

} Tannery attributes the alternative solution of I. 18 (as of 1. 19) to an old scholiast.
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we have  (2)={ (20+ 30) =25.

Hence ()=x-35.
Lastly (3 +(1)-(2)=40
or 2r—§ —25=40.
Therefore =3

The numbers are 30, 25, 35.]

19. To find four numbers such that the sum of any three
exceeds the fourth by a given number.
Necessary condition. Half the sum of the four given differences
must be greater than any one of them.
Given differences 20, 30, 40, 50.
2r the sum of the required numbers. Therefore the
numbers are
r—15, r—20, r—25 r—I0
Therefore 4 — 70=2x, and r = 35.
The numbers are 20, 15, 10, 25.

[Otkerarise thus'. If the fourth number (4) is z,
(1) +(2)+(3) =+ 20.

Put (2) +(3) equal to half the sum of the two excesses 20
and 30, 7.e. 25 [this is equivalent to adding the two
equations

(1D +(2)+(3)—(4) = 20,
@)+(3)+(4)- (1) = 30}

It follows by subtraction that (1)=x— 5.

Next we add the equations beginning with (2) and (3)
respectively, and we obtain

(3)+(4)=1(30+40)=35,

so that 3)=335—=

It follows that (2)=x-10. *

Lastly, since (4)+(1) + (2) —(3) = 50,

3r—15—(35—2)=50, and r=25.
The numbers are accordingly 20, 15, 10, 25.]

20. To divide a given number into three numbers such that the
sum of each extreme and the mean has to the other extreme a
given ratio.

Given number 100; and let (1) +(2)=3.(3) and (2)+(3)
=4.(1)

1 Tannery attribates the alternative solution of 1. 19 (as of 1. 18) to an old scholiast.
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z the third number. Thus the sum of the first and second
= 3z, and the sum of the three = 4x = 100.
Hence x = 25, and the sum of the first two = 75.
Let y be the first. Therefore sum of second and third
=4y, 5y =100 and y=20.
The required parts are 20, 55, 25.

21. To find three numbers such that the greatest exceeds the
middle number by a given fraction of the least, the middle exceeds
the least by a given fraction of the greatest, but the least exceeds
a given fraction of the middle number by a given number.

Necessary condition. The middle number must exceed the
least by such a fraction of the greatest that, if its denominator? be
multiplied into the excess of the middle number over the least, the
coefficient of x in the product is greater than the coefficient of
x in the expression for the middle number resulting from the
assumptions made?.

Suppose greatest exceeds middle by } of least, middle
exceeds least by } of greatest, and least exceeds
} of middle by 10. [Diophantus assumes the three
given fractions or submultiples to be one and the

same.]

x + 10 the least. Therefore middle = 3z, and greatest
=6x — 30.

Hence, lastly, 6r— 30— 3r=1(x +10),

or r+10=9r—qo, and r=12}.

The numbers are 45, 37}, 224.

! As already remarked (p. 52), Diophantus does not use a second symbol for the
second unknown, but makes dpefués do duty for the second as well as for the first.

2 « Denominator,” literally the “number homonymous with the fraction,” Ze. the
denominator on the assumption that the fraction is, or is expressed as, a submaultiple.

3 Wertheim points out that this condition has reference, not to the general solution of
the problem, but to the general applicability of the particular procedure which Diophantus
adopts in his solution. Suppose X, ¥, Z required such that X — ¥Y=2/m, V- Z=X|n,
Z-a=Y[p. Diophantus assumes Z=x+a, whence V=pr, X=n(px—x-a). The
condition states that #p—x>p2. If we solve for x by substituting the values of X, ¥, Z
in the first equation, we in fact obtain

mi(np—n—p)x—na}=x+a,
or X (mnp—mn—mp-1)=a (mn+1).

In order that the value of x may be positive, we must have mnp>mn+mp+1,
that is,

I
O e nf e

or (if m, n, p are positive integers) np>n+p.
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[Another solution®,

Necessary condition. The given fraction of the greatest must
be such that, when it is added to the least, the coefficient of » in
the sum is less than the coefficient of » in the expression for the
middle number resulting from the assumptions made?

Let the least number be x + 10, as before, and the given
fraction §; the middle number is therefore 3.
Next, greatest = middle + } (least) = 33x + 34.
Lastly, 3r=x+ 10+ % (34x + 3%)
=2} + 114
Therefore =124, and
the numbers are, as before, 45, 374, 224.]

22. To find three numbers such that, if each give to the next
following a given fraction of itself, in order, the results after each
has given and taken may be equal.

Let first give § of itself to second, second § of itself to
third, third } of itself tofirst.

Assume first to be a number of #’s divisible by 3, say
3x, and second to be a number of unifs divisible by
4, say 4.

Therefore second after giving and taking becomes x + 3.

Hence the first also after giving and taking must become
x+3; it must therefore have taken x4+ 3 —2z, or
3—x; 3—x must therefore be } of third, or third

=15—5%.
Lastly, 15—540—(3—2)+1=x+3,
or 13—-4x=x+3, and r=2.

The numbers are 6, 4, 5.

23. To find four numbers such that, if each give to the next
following a given fraction of itself, the results may all be equal.
Let first give § of itself to second, second 1 of itself
to third, third } of itself to fourth, and fourth } of
itself to first.
Assume first to be a number of #’s divisible by 3, say 3z,
and second to be a number of units divisible by 4,

say 4.

1 Tannery attributes this alternative solution, like the others of the same kind, to an
ancient scholiast.

2 Wertheim observes that the scholiast’s necessary condition comes to the same thing
as Diophantus’ own.
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The second after giving and taking becomes x + 3.
Therefore first after giving x to second and receiving
1 of fourth =x+ 3; therefore fourth
=6(x+3—27r)=18 -6
But fourth after giving 3 —x to first and receiving } of
third =x + 3 ; therefore third = 30x —60.
Lastly, third after giving 6x— 12 to fourth and receiving
1 from second =x+ 3.
That is, 24r— 47 =2+ 3, and x=§3.
The numbers are therefore 152, 4, 120, Lt
or, after multiplying by the common de-
nominator, 150, 92, 120, I14.

24. To find three numbers such that, if each receives a given
fraction of the sum of the other two, the results are all equal.

Let first receive 4 of (second + third), second } of
(third + first), and third % of (first + second).

Assume first =z, and for convenience’ sake (tod mpoxeipov
&vexev) take for sum of second and third a number of
units divisible by 3, say 3.

Then sum of the three=x+ 3,

and first + { (second + third) =z + 1.

Therefore second + § (third + first)=x+1;

hence 3 times second + sum of all =42+ 4,

and therefore second=x+1}.
Lastly, third +§ (first + second) =x + 1,
or 4 times third + sum of all=35x+ 5,
and third=x4 4.
Therefore r+@E+)+@E+H=x+3,
and r=13

The numbers, after multiplying by the common
denominator, are 13, 17, 19.

25. To find four numbers such that, if each receives a given
fraction of the sum of the remaining three, the four results are
equal.

Let first receive § of the rest, second } of the rest,
third } of rest, and fourth } of rest.

Assume first to be x and sum of rest a number of units
divisible by 3, say 3.

Then sum of all=x+ 3.

Now first + § (second + third + fourth)=x+ 1.
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Therefore second + } (third + fourth 4 first) =+ 1,

whence 3 times second + sum of all =4x+4,
and therefore second =x +§.

Similarly third=x+4,

and fourth=x+ 2.

Adding, we have ar+48=x+3,

and r=45

The numbers, after multiplying by a common
denominator, are 47, 77, 92, IOI.

26. Given two numbers, to find a third number which, when
multiplied into the given numbers respectively, makes one product
a square and the other the side of that square.

Given numbers 200, 5 ; required number x.
Therefore zooxr =(5x)%, and
xr=8.

27. To find two numbers such that their sum and product are
given numbers..

Necessary condition. The square of half the sum must exceed
the product by a square number. é&ore 8¢ TodTo TAacuaTiKoV,
Given sum 20, given product g6.
2z the difference of the required numbers.
Therefore the numbers are 10 +%, 10—x.
Hence 100 —x% =g6.
Therefore x= 2, and
the required numbers are 12, 8.

28. To find two numbers such that their sum and the sum of
their squares are given numbers.

Necessary condition. Double the sum of their squares must
exceed the square of their sum by a square. éore 8¢ kai TodTo
TAGTUATIKOV.

1 There has been controversy as to the meaning of this difficult phrase. Xylander,
Bachet, Cossali, Schulz, Nesselmann, all discuss it. Xylander translated it by “effictum
aliunde.” Bachet of course rejects this, and, while leaving the word untranslated,
maintains that it has an active rather than a passive signification ; it is, he says, not
something “made up” (effictum) but something ““a quo aliud quippiam effingi et
plasmari potest,” ** from which something else can be made up,” and this he interprets as
meaning that from the conditions to which the term is applied, combined with the
solutions of the respective problems in which it occurs, the rules for solving mixed
quadratics can be evolved. Of the two views I think Xylander’s is nearer the mark.
wh\acuaricéy should apparently mean ¢“of the nature of a whdoua,” just as dpaparicéy
means something connected with or suitable for a drama; and w\doua means something
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Given sum 20, given sum of squares 208.
Difference 2z.
Therefore the numbers are 10+, 10~ .
Thus 200 + 22* =208, and x=2.

The required numbers are 12, 8.

29. To find two numbers such that their sum and the difference
of their squares are given numbers.
Given sum 20, given difference of squares 80.
Difference 2x.
The numbers are therefore 10+, 10— 2.
Hence (10+2)— (10— 2)*= 8o,
or 40r =280, and x=2.
The required numbers are 12, 8.

30. To find two numbers such that their difference and product
are given numbers.

Necessary condition. Four times the product together with
the square of the difference must give a square. éore 8¢ xai ToiTo
TAAT RATLKOV. ’

Given difference 4, given product g6.
2x the sum of the required numbers.
Therefore the numbers are x+2, x—2; accordingly
x?—4=96, and x=I10.
The required numbers are 12, 8.

31. To find two numbers in a given ratio and such that the
sum of their squares also has to their sum a given ratio.
Given ratios 3:1 and 5 : I respectively.
Lesser number .
Therefore 10x* = 5. 47, whence x = 2, and
the numbers are 2, 6.

32. To find two numbers in a given ratio and such that the
sum of their squares also has to their difference a given ratio.
Given ratios 3:1I and 10: 1.
Lesser number x, which is then found from the equation
102? = 10. 2.
Hence x=2, and
the numbers are 2, 6.

““formed ” or ““moulded.” Hence the expression would seem to mean “this is of the
nature of a formula,” with the implication that the formula is not difficult to make up
or discover. Nesselmann, like Xylander, gives it much this meaning, translating it ‘‘das
lisst sich aber bewerkstelligen.” Tannery translates wAaoparwér by ‘‘formativum.”
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33. To find two numbers in a given ratio and such that the
difference of their squares also has to their sum a given ratio.
Given ratios 3:1 and 6: 1. ;
Lesser number x, which is found to be 3.
The numbers are 3, 9.

34. To find two numbers in a given ratio and such that the
difference of their squares also has to their difference a given
ratio.

Given ratios 3:1 and 12: 1.
Lesser number x, which is found to be 3.
The numbers are 3, g.

Similarly by the same method can be found two numbers in
a given ratio and (1) such that their product is to their sum in a
given ratio, or (2) such that their product is to their difference in a
given ratio.

35. To find two numbers in a given ratio and such that the
square of the lesser also has to the greater a given ratio.
Given ratios 3:1 and 6: 1 respectively.
Lesser number #, which is found to be 18.
The numbers are 18, 54.

36. To find two numbers in a given ratio and such that the
square of the lesser also has to the lesser itself a given ratio.
Given ratios 3:1 and 6:1.
Lesser number #, which is found to be 6.
The numbers are 6, 18.

37. To find two numbers in a given ratio and such that the
square of the lesser also has to the sum of both a given ratio.
Given ratios 3:1 and 2:1.
Lesser number #, which is found to be 8.
The numbers are 8, 24.

38. To find two numbers in a given ratio and such that the
square of the lesser also has to the difference between them a
given ratio.

Given ratios 3:1 and 6:1.
Lesser number #, which is found to be 12.
The numbers are 12, 36.
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Similarly can be found two numbers in a given ratio and

(1) such that the square of the greater also has to the
lesser a given ratio, or

(2) such that the square of the greater also has to the
greater itself a given ratio, or

(3) such that the square of the greater also has to the sum
or difference of the two a given ratio.

39. Given two numbers, to find a third such that the sums of
the several pairs multiplied by the corresponding third number
give three numbers in arithmetical progression.

Given numbers 3, 5.
Required number .
The three products are therefore 3¢ 415, 52+ 15, 82
Now 3x + 15 must be either the middle or the least of
the three, and 3xr+15 either the greatest or the
middle.
(1) sx+ 15 greatest, 3r+ 15 least.
Therefore 5x+ 15+ 3z + 15=2.8%, and
LB
=5
(2) sx+ 15 greatest, 3+ 15 middle.
Therefore (5x+ 15)— (3 +15)=3xr+ 15— 8%, and
L)
=
(3) 8x greatest, 3xr+ 15 least.
Therefore 8+ 4 3x + 15=2 (5x + 15), and
r=15.

x

BOOK 11

[The first five problems of this Book are mere repetitions of problems in
Book I. They probably found their way into the text from some ancient
commentary. In each case the ratio of one required number to the other
is assumed to be 2 : 1. The enunciations only are here given.]

1. To find two numbers such that their sum is to the sum of
their squares in a given ratio [cf. L. 31].

2. To find two numbers such that their difference is to the
difference of their squares in a given ratio [cf. I. 34].
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3. To find two numbers such that their product is to their sum
or their difference in a given ratio [cf. I. 34].

4. To find two numbers such that the sum of their squares is to
their difference in a given ratio [cf. I. 32].

5. Tofind two numbers such that the difference of their squares
is to their sum in a given ratio [cf. I. 33].

6. To find two numbers having a given difference and such
that the difference of their squares exceeds their difference by a
given number.

Necessary condition. The square of their difference must be
less than the sum of the said difference and the given excess
of the difference of the squares over the difference of the
numbers.

Difference of numbers 2, the other given number 20.
Lesser number #.  Therefore x + 2 is the greater, and
47 + 4 = 22.
Therefore x = 4%, and
the numbers are 4§, 64.

7. To find two numbers such that the difference of their
squares is greater by a given number than a given ratio of
their difference® [Difference assumed.)

Necessary condition. The given ratio being 3:1, the square of
the difference of the numbers must be less than the sum of three
times that difference and the given number.

Given number 10, difference of required numbers 2.
Lesser number x.  Therefore the greater is x + 2, and
4r+4=3.2+10.
Therefore x = 3, and
the numbers are 3, 5.

8. To divide a given square number into two squares®,

1 The problems It. 6, 7 also are considered by Tannery to be interpolated from some
ancient commentary.

2 Here we have the identical phrase used in Euclid’s Dafa (cf. note on p. 132 above) :
the difference of the squares is Tfs Umepoxfjs abTov dofévre dpubuy pelfwv 4 év Aoy,
literally “ greater than their difference by a given number (more) than in a (given) ratio,”
by which is meant ‘‘greater by a given number than a given proportion or fraction
of their difference.”

3 It is to this proposition that Fermat appended his famous note in which he
enunciates what is known as. the ““‘great theorem” of Fermat. The text of the note is
as follows : E

““On the other hand it is impossible to separate a cube into two cubes, or a.
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Given square number 16.

2* one of the required squares. Therefore 16— #* must
be equal to a square,

Take a square of the form® (mx—4), m being any
integer and 4 the number which is the square root
of 16, eg. take (2x—4)', and equate it to 16 —22

Therefore 44°—16x+16=16—23,

or 5x?=16x, and xr =18,

The required squares are therefore ?25?6, %4
9. To divide a given number which is the sum of two squares
into two other squares?

biquadrate into two biquadrates, or generally any power except a square into two powers
with the same exponent. 1 have discovered a truly marvellous proof of this, which
however the margin is not large enough to contain.”

Did Fermat really possess a proof of the general proposition that x™+y™=2™ canuot
be solved in rational numbers where m is any number >2? As Wertheim says, one
is tempted to doubt this, seeing that, in spite of the labours of Euler, Lejeune-Dirichlet,
Kummer and others, a general proof has not even yet been discovered. Euler proved
the theorem for m=3 and m=y4, Dirichlet for m =g, and Kummer, by means of the
higher theory of numbers, produced a proof which only excludes certain particular
values of 7, which values are rare, at all events among the smaller values of = ; thus
there is no value of 7 below 100 for which Kummer’s proof does not serve. (I take
these facts from Weber and Wellstein’s Encyclopidic der Elementar-Mathematik, 1,,
p. 284, where a proof of the formula for m=4 is given.)

It appears that the Gottingen Academy of Sciences has recently awarded a prize
to Dr A. Wieferich, of Miinster, for a proof that the equation x”+y”=3" cannot be
solved in terms of positive integers not multiples of g, if 22— 2 is not divisible by %
¢ This surprisingly simple result represents the first advance, since the time of Kummer,
in the proof of the last Fermat theorem” (Bullctin of the American Mathemaltical Society,
February 1910).

Fermat says (*‘Relation des nouvelles découvertes en la science des nombres,”
August 1659, Ocuvres, 11. P 433) ﬂmt he proved that no cube is divisible into two cubes by
a variety of his method of ion (descente infinic or inddfinic) different from
that which he employed for o(her negative or posmve theorems; as to the other cases, see
Supplement, sections I., 11.

1 Diophantus’ words are: “I form the square from any number of dpfuol minus
as many units as there are in the side of 16.” It is implied throughout that » must
be so chosen that the result may be rational in Diophantus’ sense, f.c. rational and
positive.

? Diophantus’ solution is substantially the same as Eulers (dlgzbra, tr. Hewlett,
Part 11. Art. 219), though the latter is expressed more generally.

Required to find %, y such that

A yi=fiygR,
If xZ f, theny S g
Put therefore x=ftpe, y=g-¢z2:

H. D, 10
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Given number 13 = 2%+ 3%

As the roots of these squares are 2, 3, take (¥ + 2)* as the
first square and (#x— 3)* as the second (where 2 is
an integer), say (2x — 3)*.

Therefore (2 + 4% + 4) + (422 + 9 — 122) = 13,

or 5x’+13 8x-13 LSOl B

Therefore x = &,-and

the required squares are a8y

25° 25
10. To find two square numbers having a glven dlfference

Given difference 60.
Side of one number z, side of the other x plus any
number the square of which is not greater than 6o,

say 3.
Therefore (#+3)'—x"=60;
x=28%, and

the required squares are 72}, 132}.

11. To add the same (required) number to two given numbers
so as to make each of them a square.

(1) Given numbers 2, 3; required number .
Therefore * B 2} must both be squares.
xr+3

This is called a double-equation (Simhoiaorns).
To solve it, take the difference between the two expressions
and resolve 1t into two factors'; in this case let us say

4, i'
Then take either

(a) the square of half the difference between these factors
and equale it to the lesser expression,

or (&) the square of half the sum and equate it fto the

Lrealer.,
hence - ofpz+ %" - agyz + g%l =o,
: _289-2fp
and v

w8t -) | _Ypr+e (P-4
so that = yrw ) = gt o
in which we may substitute all possible numbers for 2, ¢.
1 Here, as always, the factors chosen must be suitable factors, 7.c. such as will lead to
a ‘‘rational ” result, in Diophantus’ sense.
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¥ In this case (@) the square of ha]f the difference is 225.

Therefore x + 2=225, and z=2 o2 the squares being 228, 289

Taking (&) the square of half the sum, we have x+ 3 288
which gives the same result.’

(2) Toavoid a double—equatlon1

first find a number which when added to 2 laritol3;
givés a square.

Take ¢g. the number 2% — 2, which when added to 2 gives
a square.

Therefore, since this same number added to 3 gives a
square, J

2*+ 1 =a square = (¥ — 4)’, say,

the number of units in the expression (in this case 4)
being so taken that the solution may give 2> 2.

Therefore x =13, and

the required number is 2%, as before.

12. To subtract the same (required) number from two given
numbers so as to make both remainders squares.
Given numbers 9, 21.
Assuming 9 —x* as the required number, we satisfy one
condition, and the other requires that 12 + 2* shall be
a square.
Assume as the side of this square x minus some number
the square of which > 12, say 4.
Therefore (x—4q)y=12+27,
and 3 x=%.
The required number is then 83.
[Diophantus does not reduce to lowest terms, but says
x=1% and then subtracts }$-from g or 278,

! This is the same procedure as that of Euler, who does not use double-equations.
Euler (4/gebra, tr. Hewlett, Part 11. Art. 214) solves the problem

xtq=u
z+y=2 °
Suppose x+4=p%;
therefore x=p2~4, and z+7=p2+3.
Suppose that 2+3=(2+9)%;
therefore 2=(3-¢9/2g.
Thus . x=(9- 222+ ¢4)/4g%

or, if we take a fraction 7/s instead of ¢,
x=(gs* - 1273:2+r‘)l4r7.\
10—2
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13. From the same (required) number to subtract two given
numbers so as to make both remainders squares.
Given numbers 6, 7.

(1) Let x be the required number.
Therefore i : ?} are both squares.

The difference is 1, which is the product of, say, 2 and % ;
and, by the rule for solving a double equation,
x—7=4%, and x=%’.
(2) To avoid a double-equation, seek a number which exceeds
a square by 6, say x? +6.
Therefore #?— 1 must also be a square = (x — 2)?, say.
Therefore ¥ =%, and

the required number is %

14. To divide a given number into two parts and to find a
square which when added to each of the two parts gives a square
number.

Given number 20.
Take two numbers! such that the sum of their squares
< 20, say 2, 3.

1 Diophantus implies here that the two numbers chosen mus¢ be such that the sum of
their squares <20. Tannery pointed ont (B:bliotheca Mathematica, 1887, p. 103) that
this is not so and that the condition actually necessary to ensure a real solution in
Diophantus’ sense is something different. We have to solve the equations

xt+y=a, R2+x=ul P+y=12
We assume #=z+m, v=3+2, and, eliminating x, y, we obtain
_a=(m*+n?)
T T a(m+n)
In order that z may be positive, we must have m%+#n2<a; but z need not be positive
in order to satisfy the above equations. What is really required is that x, y shall both be
positive,
Now from the above we derive
x~y=(u?-vY) =123 (m-n)+m?-n?
_ (m=n)(a+2mn)
. m+n '
Solving for x, y, we have
m (a+mn—n?)
x=
mi+n

_n(atmn-m?
V3 m+n

If, of the two assumed numbers, 7 > #, the condition necessary to secure that x, y shall
both be positive is a+mn> m?
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Add x to each and square.
We then have
x4 4r+4
2+ 62+ 9}' 3
+ 9
are the same square.
Let then x* be the required square, and we have only to

and, i } are respectively subtracted, the remainders

make 4x+4} the required parts of 20.

6x+9
Thus 10x + 13 = 20,
and r=
The required parts are then f—z ), and

the required square is 409
15. To divide a given number into two parts and to find a
square which, when each part is respectively subtracted from it,
gives a square.
Given number 20,
Take (x+ m)* for the required square!, where #* is not
greater than 20,
eg. take (x + 2)%
This leaves a square if either 42+ 4
or 2x+3
Let these then be the parts of 20.

} is subtracted.

1 Here again the implied condition, namely that 73 is not greater than 20, is not
necessary ; the condition necessary for a real solution is something different.

The equations to be solved are x+y=a, 22-x=a?, 2-y=23

Diophantus here puts (§4 )2 for 22, so that, if x=2m¢+m?, the second equation is
satisfied. Now (£+ 7)%—y must also be a square, and if this square is equal to (¢ +m - n)?,
say, we must have

y=2n{+armn—n
Therefore, since x+y=a,
2 (m+n)E+m2+2mn - ni=a,
whesce P L 2y
2 (m4n)

and it follows that

m (a— mn +nt) _nla-—mnim?

9 m+n e m+n

If m>n, it is necessary, in order that x, y may both be positive, that ¢+ 72> ms,
which is the true condition for a real solution.
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Therefore 62+ 7 =20, and x =18,

The required parts are therefore 7—66, %), and
25

the required square is %E‘
16. To find two numbers in a given ratio and_such that each
when added to an assigned square gives a square..
\ Given square 9, given ratio 3: I.

If we take a square of side (#x+ 3) and subtract 9
from it, the remainder may be taken as one of the
numbers required.

Take, eg., (x + 3)* — 9, or x* + 6z, for the lesser number.

Therefore 32#2+18x is the greater number, and 3x?+18x+9
must be made a square = (2x — 3)? say.

Therefore x = 30, and

the required numbers are 1080, 3240.

17. To find three numbers such that, if each give to the next
following a given fraction of itself and a given number besides,
the results after each has given and taken may be equall.

First gives to second } of itself +6, second to third } of
itself + 7, third to first } of itself + 8.

Let first and second be 5z, 6x respectively.

When second has taken x + 6 from first it becomes 7z + 6,
and when it has given x+7 to third it becomes
6xr—1.

But first when it has given x+6 to second becomes
4x—6; and this too when it has taken } of third
+ 8 must become 6x—1.

Therefore { of third + 8 = 2x + 5, and

third = 14x — 21.

Next, third after receiving £ of second + 7 and giving } of
itself + 8 must become 6z — 1.

Therefore 137 ~ 19=6x—1, and z =3¢

90 108 105

Th i e —=
e required numbers are e

1 Tannery is of opinion that the problems 11. 17 and 18 have crept into the text
from an ancient commentary to Book I. to which they would more appropriately belong.
Cf. 1. 22, 23. :
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18. To divide a given number into three parts satisfying the
conditions of the preceding problem?,
Given number 8o.
Let first give to second } of itself + 6, second to third
4 of itself + 7, and third to first § of itself + 8.
[What follows in the text is not a solution of the problem
but an alternative solution of the preceding. The
first two numbers are assumed to be 5+ and 12, and
the numbers found are 179, 2—28, EIJ]
19° 19’ 19
19. To find three squares such that the difference between the
greatest and the middle has to the difference between the middle
and the least a given ratio.
Given ratio 3: 1. -
Assume the least square = 2% the middle = 2° + 2r + 1.
Therefore the greatest = 2*+ 8¢ 4 4 = square = (¥ + 3)}, say.
Thus x= 2}, and
) the squares are 30}, 12}, 61.

20. To find two numbers such that the square of either added
to the other gives a square?

1 Though the solution is not given in the text, it is easily obtained from the general
solutjon of the preceding problem, which again, at least with our notation, is easy.

Let us assume, with Wertheim, that the numbers required in I1. 17 are 5%, 6y, 72.
Then by the conditions of the problem

4x-6+s+8=5y—7+x+6=62-8+y+7,

from which two equations we can find x, 5 in terms of y.

In fact x=(26y —18)[19 and g=(17y - 3)/19,
and the general solution is

5(36y-18)[19, 67, 7 (177-3)]19-

[In his solution Diophantus assumes x=y, whence y=$:| 5

Now, to solve IL. 18, we have only to equate the sum of the three expressions to 8o,
and so find y.

‘We have 1631

y(5.26+6.194+7.17)-5.18-7.3=80.19, y=—sa,
and the required numbers are
94409 TE6 T4
363 363 363 °
3 Euler (4/gebra, Part 11. Art. 239) solves this problem more generally thus.
Required to find x, y such that 22+y and y2+x are squares.
If we begin by supposing a%+y=p?%, so that y=p2—x?, and then substitute the value
of y in terms of x in the second expression, we must have
24— 2p2% + 2+ x=square.
But, as this is difficult to solve, let us suppose instead that

22+y=(p-2)2=p%- 2px+.22,
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Assume for the numbers #, 2x+ 1, which by their form
satisfy one condition.
The other condition gives
44°+ 5x + 1 =square = (2x — 2)’, say.
Therefore x = $;, and
the numbers are %, g.
21, To find two numbers such that the square of either minus
the other number gives a square.
x+1, 2r+ 1 are assumed, satisfying one condition.
The other condition gives
42* + 3x = square = gz*, say.
Therefore x =2, and

the numbers are g, 155

22, To find two numbers such that the square of either added
to the sum of both gives a square.
Assume z, x + 1 for the numbers. Thus one condition is
satisfied.

It remains that
22+ 4r+ 2 = square = (¥ — 2)}, say.

Therefore x=1, and
the numbers are X, 3

iy
[Diophantus has £, 42.]

23. To find two numbers such that the square of either minus
the sum of both gives a square.
Assume x, x+ 1 for the numbers, thus satisfying one
condition.
Then 2°—2x—1=square=(r— 3) say.
Therefore x = 2}, and
the numbers are 2}, 3%.

and that Pra=(g-y)?=¢%~ 29+
1t follows that y+apx=p2%
x+agy=g,
—gt 2_
whence x= B L

i1 7T g1
Suppose, for example, p=2, ¢=3, and we have x=%, y= 3—2; and so on. We

must of course choose p, ¢ such that x, y are both positive. Diophantus’ solution is
obtained by putting 2= -1, 7=3.
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24. To find two numbers such that either added to the square
of their sum gives a square.
Since 2%+ 322, #*+ 82® are both squares, let the numbers
be 32 82° and their sum .
Therefore 1212* = 2% whence 112*=x, and x =}.

The numbers are therefore 3., .2
1217 121

25. To find two numbers such that the square of their sum
minus either number gives a square.
If we subtract 7 or 12 from 16, we get a square.
Assume then 124%, 72* for the numbers, and 164* for the
square of their sum.
Hence 192*=4x, and r= 4,
The numbers are ;gf, ;;f
26. To find two numbers such that their product added to
either gives a square, and the sides of the two squares added
together produce a given number.
Let the given number be 6.
Since x (4 — 1)+ is a square, let , 4r — 1 be the numbers.
Therefore 44°+ 3r— I is a square, and the side of this
square must be 6 — 2z [since 2« is the side of the
first square and the sum of the sides of the square
is 6].
Since 422+ 3x — 1 =(6— 2v)},
we have x =37, and
121
the numbers are g, =
27. To find two numbers such that their product minus either
gives a square, and the sides of the two squares so arising when
added together produce a given number.
Let the given number be 5.
Assume 4x+ 1, x for the numbers, so that one condition
is satisfied.
Also 4r*—3r—1=(5—2x)%
Therefore x = 3§, and
26 121

the numbers are 5
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28. To find two square numbers such that their product added
to either gives a square.
Let the numbers! be 22, 32

229 + %)
Py
To make the first expression a square we make 2*+ I a

square, putting

24 1 =(x— 2§, say.

Therefore x =4, and 2? =&,
We have now to make % (% + 1) a square [and y must be

different from x].

Therefore are both squares.

Put 97+ 9= (35 — 4" say,
and y=45.
9 499
Therefore the numbers are 6 56

29. To find two square numbers such that their product minus
either gives a square.
Let 2 52 be the numbers.
2y —
Then pr
A solution of #*— 1 =(a square) is 2?=25.
We have now to solve .
3% y* — 3% = a square.
Put P—1=(y — 4), say.
Therefore y = 47, and

289 100
the numbers are S

yz
f} are both squares.

30. To find two numbers such that their product + their sum
gives a square.
Now m* + 7® & 2mn is a square.
Put 2, 3, say, for m, » respectively, and of course
2°+ 32+ 2.2.3 is a square.
Assume then product of numbers = (22 + 3%) 22 or 132% and
sum = 2.2.32% or 122%
The product being 1327 let %, 13# be the numbers.
Therefore their sum 14r = 122% and x=§.

The numbers are therefore %, 931

! Diophantus does not use two unknowns, but assumes the numbers to be 22 and 1
until he has found x. Then he uses the same unknown (x) to find what he had first taken
to be unity, as explained above, p. 52. The same remark applies to the next problem.
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31. To find two numbers such that their sum is a square and
their product + their sum gives a square.

2.2m.m=asquare, and (2m)* + m* + 2. 2m .m = a square.

Ifm=2 4+2°+2.4.2=360r4.

Let then the product of the numbers be (4 + 2%)2* or 20¢?,
and their sum 2.4.22% or 162% and take 2z, 10r for
the numbers.

Then 12r = 162% and x=3.

The numbers are g, 3%40

32. To find three numbers such that the square of any one of
them added to the next following gives a square.

Let the first be x, the second 2r + 1, and the third
2(2xr+ 1)+ 1 or 4r+ 3, so that two conditions are
satisfied. ,

The last condition gives (4x + 3)*+ x = square = (4x — 4),
say.

Therefore x=Z, and

57
7 7T 19
the numbers are 5 s 5
33. To find three numbers such that the square of any one of
them smznus the next following gives a square.
Assume x + 1, 2r + I, 4x + 1 for the numbers, so that two
conditions are satisfied.
Lastly, 162?+ 72 = square = 2522 say,
and r=1.

The n are 16 3 37
umbers o

34. To find three numbers such that the square of any one
added to the sum of all three gives a square.
{3 (m —#)}*+mn is a square. Take a number separable
into two factors (m, 2) in three ways, say 12, which is
the product of (1, 12), (2,6) and (3, 4).
The values then of § (m — #) are 5}, 2, §.
Take 51z, 2, {x for the numbers, and for their sum 1222
Therefore 8z = 122?, and r=%.
The numbers are X, 4, I,
3033
[Diophantus says ¢, and 22, §, 2.]
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35. To find three numbers such that the square of any one’
minus the sum of all three gives a square.
{3 m +n)}* —mn is a square. Take, as before, a number
divisible into factors in three ways, as 12.
Let then 64z, 47, 3{x be the numbers, and their sum 1222
Therefore 14x = 124% and x=1.

The numbers are ig—k, %, 2%’}
BOOK 1III

1. To find three numbers such that, if the square of any one
of them be subtracted from the sum of all three, the remainder
is a square®.

Take two squares x2 4x?; the sum is 5z2%

If then we take 522 as the sum of the three numbers, and
#, 2x as two of them, we satisfy two conditions.
Next divide 5, which is the sum of two squares, into two

other squares %, 321 [1L. 9], and assume 2z for the
third number.
Therefore x + 27+ 2r=52% and = }L.

17 34 34
25° 25° 125°
[Diophantus writes % for x and 8, 112, &% for the numbers.]

The numbers are

2. To find three numbers such that the square of the sum of
all three added to any one of them gives a square.
Let the square of the sum of all three be #? and the
numbers 32% 827 1522
Hence 2622 =1, x =g, and
B3RS FaI5S
676’ 676° 676
3. To find three numbers such that the square of the sum of
all three minus any one of them gives a square.
Sum of all three 4z, its square 162% the numbers 7z?

the numbers are

1272 1843
Then 344" = 4x, x =%, and
28 48 6o
the numbers are By 289° 289"

! The fact that the problems III. 1—4 are very like 11. 34, 35 makes Tannery suspect
that they have found their way into the text from some ancient commentary.
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4. To find three numbers such that, if the square of their sum
be subtracted from any one of them, the remainder is a square.
Sum z, numbers 222, 522 1022
Then 1722 =x, x =, and
2 5 10
the numbers are B 38’ 28"
5. To find three numbers such that their sum is a square and
the sum of any pair exceeds the third by a square.
Let the sum of the three be (#+ 1)*; let first + second
= third + 1, so that third = }x#*+ x; let second + third
= first + 2% so that first =z + .
Therefore second = {x? + 1.
It remains that first + third = second + a square.
Therefore 2x = square = 16, say, and x= 8.
The numbers are 8}, 321, 4o.
Otherwise thus".
First find three squares such that their sum is a square.
Find eg. what square number+ 4+ 9 gives a square,
that is, 36;
4, 36, 9 are therefore squares with the required property.
Next find three numbers such that the sum of each pair=
the third 4+ a given number; in this case suppose
first + second — third =4,
second + third — first =9,
third + first — second = 36.
This problem has already been solved [I. 18].
The numbers are respectively 20, 6}, 22}.

1 We should naturally suppose that this alternative solution, like others, was inter-
polated. But we are reluctant to think so because the solution is so elegant that it
can hardly be attributed to a scholiast. If the solution is not genuine, we have here
an illustration of the truth that, however ingenious they are, Diophantus’ solutions are not
always the best imaginable (Loria, Le scienze esatte nell’ antica Grecia, Libro V. pp. 138—9).
In this case the more elegant solution is the alternative one. Generalised, it is as follows.
We have to find x, , 2 so that

—x+y+2=a square
xX—-y+z=a square} 9
x+y—2=a square
and also X+y-+2z=a square,
We have only to equate the first three expressions to squares a2, 42, (2 such that
a+62+c2=a square, #2 say, since the sum of the first three expressions is itself
x+y+a.
The solution is then

g = L
1—1(1'21-[’), y_z(t2+a3), z—a(a +62).
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6. To find three numbers such that their sum is a square and
the sum of any pair is a square.
Let the sum of all three be #? + 27+ 1, sum of first and
second #? and therefore the third 24+ 1; let sum of
second and third be (x — 1)4
Therefore the first = 4, and the second = x? — 4.
But first + third = square,
that is, 6z + I =square = 121, say.
Therefore x = 20, and
the numbers are 8o, 320, 41.

[An alternative solution, obviously interpolated, is practically
identical with the above except that it takes the square 36 as
the value of 6xr+1, so that #=3p and the numbers are 14
840 385 456]

T 36 367 36
7. To find three numbers in A.P. such that the sum of any
pair gives a square.
First find three square numbers in A.P. and such that half
their sum is greater than any one of them. Let
2%, (x + 1) be the first and second of these ; therefore
the third is #* 4 4x + 2= (x— 8}, say.
Therefore x=§3 or 3};
and we may take as the numbers 961, 1681, 2401.
We have now to find three numbers such that the sums
of pairs are the numbers just found.
The sum of the three = 8942 = 25214, and
the three numbers are 120}, 840}, 1560}.

8. Given one number, to find three others such that the sum
of any pair of them added to the given number gives a square, and
also the sum of the three added to the given number gives a
square.

Given number 3.
Suppose first required number + second =x%+4x+1,
second + third =x24+6x+6,
sum of all three =22+ 82+ 13.
Therefore third =4z + 12, second = #? + 22— 6, first = 22+ 7.
Also first + third + 3 = a square,
that is, 6% + 22 = square = 100, suppose.
Hence =13, and
the numbers are 33, 189, 64.
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9. Given one number, to find three others such that the sum
of any pair of them minus the given number gives a square, and
also the sum of the three minus the given number gives a square.

Given number 3.
Suppose first of required numbers + second =x*+ 3,

second + third =x*+ 2244,

sum of the three =x*+ 4x+ 7.
Therefore third =4x + 4, second =x*— 2z, first=2x+3.
Lastly, first + third — 3 =6x+ 4 = a square = 64, say.
Therefore x = 10,and

(23, 80, 44) is a solution.

10. To find three numbers such that the product of any pair
of them added to a given number gives a square.

Let the given number be 12. Take a square (say 25)
and subtract 12. ‘Take the difference (13) for the
product of the first and second numbers, and let these
numbers be 13z, I/x respectively.

Again.subtract 12 from another square, say 16,and let the
difference (4) be the product of the second and third
numbers.

Therefore the third number = 4.

The third condition gives 52x% 4 12 =a square; now
52=4.13,and 13 is not a square; but, if it were a
square, the equation could easily be solved™.

Thus we must find two numbers to replace 13 and 4 such
that their product is a square, while either + 12 is
also a square.

Now the product is a square if both are squares; hence we
must find two squares such that either + 12 = a square.

“ This is easy* and, as we said, it makes the equation easy
to solve.”

The squares 4, 1 satisfy the condition.

1 The equation 5222+ 12 =2 can in reality be solved as it stands, by virtne of the fact
that it has one obvious solution, namely x=1. Another solution is found by subslituting
y+1 for x, and so on. Cf. pp. 69, 70 above. The value x=r itself gives (13, 1, 4) as
a solution of the problem.

2 The method is indicated in 1I. 34. We have to find two pairs of squares differing
by 12. (a) If we put 12=6. 2, we have

1 g 1 2
{;(6—2)} +12= {;(6+1)} 2
and 16, 4 are squares differing by 12, or 4 is a square which when added to 12 gives a
square. (5) If we put 12=4.3, we find {2(4—3)}»2 or ito be a square which when
added to 12 gives a square.
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Retracing our steps, we now put 4, 1/x and x/4 for the
numbers, and we have to solve the equation
2%+ 12 =square = (¥ + 3)? say.
Therefore = §, and

(2, 2, %) is a solution?,

11. To find three numbers such that the product of any pair
minus a given number gives a square.
Given number 10.
Put product of first and second = a square 4+ 10=4 + 10,
say, and let first = 14%, second = 1/z.
Let product of second and third = a square + 10= 19, say ;
therefore third = 1927
By the third condition, 2662* — 10 must be a square; but
266 is not a square?
Therefore, as in the preceding problem, we must find two
squares each of which exceeds a square by 10.
The squares 304, 12} satisfy these conditions?®,
Putting now 30}x, 1/, 12}x for the numbers, we have,
by the third condition, 370%&x* — 10 = square [for
37045 Diophantus writes 370} ];
therefore 59294*— 160 =square = (77x — 2)’, say.
Therefore x =4}, and
12
the numbers are 4% Z—Z, 5%21
1 Euler (4/gebra, Part 11, Art. 232) has an elegant solution of this problem in whole
numbers. Let it be required to find , y, z such that xy +a, yz+ a, 22 +a are all squares.
Suppose xy+a=p?% and make s=x+y+g;
therefore xs+a=a2+xy+gx+a=x2+gx+p,

and yita=xy+yitgy+a=p>2+qy+2;
and the right hand expressions are both squares if g= %2, so that z=x+y*2p,

We can therefore take any value for p such that p?>a, split p#2—a into factors,
take those factors respectively for the values of x and y, and so find z.

E.g. suppose a=12 and p?=25, so that ay=13; let x=1, y=13, and we have
z=14*10=124 Or 4, and (1, 13, 4), (1, 13, 24) are solutions.

2 As a matter of fact, the equation 266x% —~ 10=#? can be solved as it stands, since it
has one obvious solution, namely x=1. (Cf. pp. 69, 70 above and note on preceding
problem, p. 159.) The value x=1 gives (14, 1, 19) as a solution of the problem.

8 Tannery brackets the passage in the text in which these squares are found, on
the ground that, as the solution was not given in the corresponding place of 111. 10, there
was no hecessity to give it here, 10and 1 being factors of 10,

2 5 H
{;(IO—I)} +10= {;(m+x)} s
thus 30} is a square which exceeds a square by 10. Similarly {2 (5+'z)} ! or 12} is such

a square. The latter is found in the text by putting 7% — 10 =square=(m - 2)?, whence
m=3}, and m?=12}.
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12. To find three numbers such that the product of any two
added to the third gives a square.

Take a square and subtract part of it for the third number ;
let #2462 +9 be one of the sums, and g the third
number.

Therefore product of first and second = »* + 6x; let first
=1, so that second =x + 6.

By the two remaining conditions

10r + 54
1or+ 6

Therefore we have to find two squares differing by 48;
“this is easy and can be done in an infinite number
of ways.”

The squares 16, 64 satisfy the condition. Equating these
squares to the respective expressions, we obtain
x=1, and

the numbers are 1, 7, 9. *

} are both squares.

13. To find three numbers such that the product of any two
minus the third gives a square.
First x, second x+ 4 ; therefore product = x? 4 4%, and we
assume third = 4.
Therefore, by the other conditions,
47"+ 157
4t —xr—4
The difference = 164 + 4= 4 (4x + 1), and we put
B @r+5)P =42+ 157
Therefore x = 25, and
the numbers are :%

}are both squares.

OS5 100
’ 20’ 20°
14. To find three numbers such that the product of any two
added to the square of the third gives a square.

! Wertheim gives a more general solution, as follows. If we take as the required
numbers X=1 ax, Y=ax+8, Z=2#, two conditions are already satisfied, namely
XY+ Z%=a square, and YZ+ X?=a square.

It only remains to satisfy the condition ZX + ¥2=a square, or

a%x? + % ab’x + b =a square.

Put a’x"’+%ab”x+ b= (ax + k%32,

_168% (£ - 1)

i TaGa- s

where 4 remains undetermined.
H. D. II
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First x, second 4x + 4, third 1. Two conditions are thus
satisfied.

The third condition gives

Z+ (47 + 4)* = a square = (42 — 5%, say.
Therefore =%, and
the numbers (omitting the common denominator)
are 9, 328, 73.

15. To find three numbers such that the product of any two
added to the sum of those two gives a square!.

[Lemma.] The product of the squares of any two con-
secutive numbers added to the sum of the said
squares gives a square®

Let 4, 9 be two of the required numbers, x the third.

10r+9}

Therefore are both squares.

The difference =5x+5=5(x +1).
Equating the square of half the sum of the factors to
10r + 9, we have
F=+o)P =102 +0.
Therefore » =28, and (4, 9, 28) is a solution.

1 The problem can of course be solved more elegantly, with our notation, thus. (The
same remark applies to the next problem, I11. 16.)
If x, y, « are the required numbers, xy+x+y, etc. are to be squares. We may
therefore write the conditions in the form
{(#+1) (z+1)=a square +1,
(z+1)(x+ 1) =a square +1,
(x+1){y+1)=a square +1.
Assuming a?, 42, ¢2 for the respective squares, and putting é=x+1, 9=y+1, {=2+1,
we have to solve
n¢=a?+1,
{E=82+1,
o=c+1.
[This is practically the same problem as that in the Lemma to Dioph. v. 8.]
Multiplying the second and third equations and dividing by the first, we have

E=V{(B24 1) (E+ 1)/(@®+ 1)},
with similar expressions for 3,

x, », 7 are these expressions minus 1 respectively. a2 %, ¢ must of course be so
chosen that the resulting values of £, %, { may be rational. Cf. Euler, Commentationes
arithmeticae, 11. p. 577.

2 In fact, a2 (@ + 12+ a2 +(a+1)2={a(a+1)+1}%
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Otherwise thus'.
Assume first number to be z, second 3.
Therefore 4 + 3 =square = 25 say, whence x = 5}, and 54,
3 satisfy one condition.

! This alternative solution would appear to be undoubtedly genuine.
Diophantus has solved the equations
yi+y+e=ul
2x+35+x=12 }
ay+x+y=n?
Fermat shows how to solve the corresponding problem with four numbers instead of
three. He uses for this purpose Diophantus’ solution of V. 5, namely the problem
of finding x2, 32, 22, such that

YU+ a2=y2, 222+ y2=s2, a2 t2=pt }
Y2+ 4a2=08, 2hB4alial=22, afPialiyi=a?
Diophantus ﬁnds( 95 694 ’ 8 ) as a solution of the latter problem. Fermat takes

these as the first three of the four numbers which are to satisfy the condition that the
product of any two plus the sum of those two gives a square, and assumes x for the
fourth. Three relations out of six are already satisfied, and the other three require

28T SR S EEEa5
9 9’ 9 u)
Qi O R 0%
9 9 9 9

x+ +196 or —2051+L9—6
9 9 9

to be made squares: a “tnple-equahon to be solved by Fermat’s method. (See the
Supplement, section V.)

Fermat does not give the solution, but I had the curiosity to work it out in order to
verify to what enormous numbers the method of the triple-equation leads, even in such
comparatively simple cases.

We may of course neglect the denominator g and solve the equations

34% + 25=22,
73x + 64=27,
205% + 196 =2
The method gives
_ 459818598496844787200
6316290048284 19699201’
the denominator being equal to (25132230399)%
Verifying the correctness of the solution, we find that, in fact,

34, =(15°5!36897 )“
25 25132230399
73 .., (103512519012
64 “'"(1513”30399)
205 g (1127584:601)2
196" 71 T\ 25132230309

Strictly speaking, as the value found for x is negative, we ought to substitute y — 4
for it (where — 4 is the value found) in the three equations and start afresh. The
portentous numbers which would thus arise must be left to the imagination.

I1—2
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Let the third be x, while 5}, 3 are the first two.

Therefore 6;;1 53%} must both be squares;

but, since the coefficients in one expression arve vespectively
greater than those in the other, but neither of the ratios
of covresponding coefficients is that of a square lo a
square, our suppositions will not serve the purpose; we
cannot solve by our method.

Hence (to replace 5}, 3) we must find two numbers such
that their product + their sum =a square, and the
ratio of the numbers increased by 1 respectively is
the ratio of a square to a square.

Let these be y and 4y + 3, which satisfy the latter con-
dition; and, in order that the other may be satisfied,
we must have

49" + 8y + 3 =square =(2y — 3)’, say.

Therefore r==.

Assume now £, 4}, x for the three numbers.

5ix+4

B+

or, if we multiply by 25 and 100 respectively,

130x + 105
1302+ 30

The difference is 75 = 3.25, and the usual method of

solution gives x = f;.

Therefore } are both squares,

} are both squares.

STAZEN
The numbers are 50 =D

16. To find three numbers such that the product of any two

minus the sum of those two gives a square.

Put x for the first, and any number for the second; we
then fall into the same difficulty as in the last
problem.

We have to find two numbers such that

(a) their product minus their sum = a square, and
(6) when each is diminished by 1, the remainders
have the ratio of squares.

Now 47+ 1, y + 1 satisfy the latter condition.

The former (a) requires that

4y*— 1 = square = (2y — 2)’, say,
which gives y=§.

Assume then 43, 28, x for the numbers.
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Therefore 2%:: il iﬁ} are both squares,

or, if we multiply by 4, 16 respectively,

10x — 14

10x — 26

The difference is 12=2.6, and the usual method gives
z=3.

} are both squares.

I3 28 2]
The numbers are g, 34 =75, 3=§4.
17. To find two numbers such that their product added to
both or to either gives a square,
Assume z, 4x — 1 for the numbers, since
x(4x— 1)+ x = 4+% a square.
422+ 3r — 1
42+ 4x — 1
The difference is x=4x.}, and we find
r=2p.
65 36
The numbers are e
18. To find two numbers such that their product minus either,
or minus the sum of both, gives a square™.

Therefore also } are both squares.

} With this problem should be compared that in paragraph 42 of Part 1. of the
Inventum Novum of Jacobus de Billy (Ocuwvres de Fermat, 1L pp. 351-2), where three
conditions correspond to those of the above problem, and there is a fourth in addition.
The problem is to find § 3 (§>7) such that

§-§n
n—&n
E+n-in
§-n-#&n

Suppose 7=x, £=1-x; the first two conditions are thus satisfied. The other

two give

are all squares.

2—x+1=u,
2l 3xt1=22
Separating the difference 2 into the factors 2x, 1, we put, as usual,

1\2
(x+-1-) =al-x+1,

=3 53
whence =3 and the numbers are $'s
To find another value of x by means of the value thus found, we put y+§ in place of

8
x in the double-equation, whence

Multiplying the lower expression by 49, we can solve in the usual way. Our expressions
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Assume x + 1, 4x for the numbers, since

4% (x 4+ 1)— 42 = a square.

44+ 3x —

42— x—

The difference is 4x = 4.1, and we find
x=1}.

The numbers are 2%, 5

Therefore also ; } are both squares.

19. To find four numbers such that the square of their sum
Pplus or minus any one singly gives a square.
Since, in any right-angled triangle,
(sq. on hypotenuse) + (twice product of perps.)= a square,
we must seek four right-angled triangles [in rational
numbers] having the same hypotenuse,
or we must find a square which is divisible into two
. squares in four different ways; and “we saw how to
divide a square into two squares in an infinite
number of ways.” [IL 8.]
Take right-angled triangles in the smallest numbers,
(3, 4, 5) and (5, 12, 13); and multiply the sides of

are ncwy”—fy+—6v- and 495° - 4'“,1'-(~69

The solution next mentioned by De Billy was clearly obtained by separating this
difference into factors such that, when the square of half their difference is equated to

»? -—y+29 , the absolute terms cancel out. The factors are 44 ==, y—7

557 4’
220 21 a 1
iG55 4 =”“”§3
4045195 22715927
71362992 71362992
48647065 22715927
71362992 71362992 .
A solution in smaller numbers is obtained by separating 48y%- 110y into factors such

and the difference between them is 48y* - 110y.

and we put

This gives y= - , whence x= ,and the numbers are

that the terms in £? in the resulting equation cancel out. The factors are 6y, 8y — §3§ ,and

we put
5 4
47959 47959 . 3 _ 5:865
ATy = 104167 Gl e 10416 s 8 10416°
This would give a negative value for 1—x; but, owing to the symmetry of the
original double-equation in x, since x= 5;862 satisfies it, so does x= 58—6_6 ; hence the

10416 41449
51865 ol 51865 "
Cf, note on V. 23.

numbers are - a solution also mentioned by De Billy.
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the first by the hypotenuse of the second and wvice
versa.

This gives the triangles (39, 52, 65) and (23, 60, 65); thus
652 is split up into two squares in fwo ways.

Again, 65 is “naturally” divided into two squares in two
ways, namely into 7?4 4% and 8 + 1%, “which is due
to the fact that 65 is the product of 13 and s, each of
which numbers is the sum of two squares.”

Form now a right-angled triangle! from 7, 4. The sides
are (7 —4% 2.7.4, 7*+4°) or (33, 56, 65).

Similarly, forming a right-angled triangle from 8, 1, we
obtain (2.8.1, 8—1? 8+ 1%) or 16, 63, 65.

Thus 65? is split into two squares in four ways.

Assume now as the sum of the numbers 65 and

as first number 2. 39. 524% = 405624%,

., second ,, 2.25.6022 = 300047,

» third ,,  2.33.562%=36962",

, fourth 2.16.632°= 201647,
the coefficients of 22 being four times the areas of the
four right-angled triangles respectively.

The sum 127684% =65, and & = 135

The numbers are

‘17136600 12675000 15615600 8517600 :
163021824’ 163021824  163021824° 163021824 "

20. To divide a given number into two parts and to find a
square which, when either of the parts is subtracted from it, gives
a square”

Given number 10, required square 2*+ 2z + 1.
Put for one of the parts 2x + 1, and for the other 4.
The conditions are therefore satisfied if
6x+ 1 =10.
Therefore x =1};
the parts are (4, 6) and the square 6}.

1 If there are two numbers g, ¢, to ‘‘form 2 right-angled triangle” from them means
to take the numbers p2+4¢2, p2—g2, 2pg. These are the sides of a right-angled triangle,
since

(22 +991=(22- %2+ (2p9)%

2 This problem and the next are the same as I1. 15, 14 respectively. It may therefore
be doubted whether the solutions here given are genuine, especially as interpolations
from ancient commentaries occur most at the beginning and end of Books,
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21. To divide a given number into two parts and to find a
square which, when added to either of the parts, gives a square.

Given number 20, required square 22+ 2x + 1.

If to the square there be added either 2x+ 3 or 42+ 8,
the result is a square,

Take 2x + 3, 4v + 8 as the parts of 20, and 6x+ 11 =20,
whence x = 14.

Therefore the parts are (6, 14) and the square 6}.

BOOK IV

1. To divide a given number into two cubes such that the sum
of their sides is a given number™
Given number 370, given sum of sides 10.
Sides of cubes 5+ #, 5 — 2z, satisfying one condition.
Therefore 3042+ 250=370, ¥ =2,
and the cubes are 73, 3% or 343, 27.

2. To find two numbers such that their difference is a given
number, and also the difference of their cubes is a given number.
Difference 6, difference of cubes 504.
Numbers z + 3, # — 3.
Therefore 1842+ 54 = 504, 2 =25, and x = 5.
The sides of the cubes are 8, 2 and the cubes 512,8.

3. To multiply one and the same number into a square and
its side respectively so as to make the latter product a cube and
the former product the side of the cube.

Let the square be 2% Its side being z, let the number

be 8/x.
Hence the products are 8z, 8, and
(8xp=8.
Therefore 2 = 8, x=1, and the number to be multiplied
is 32.

Cwds . . I
The square is ¢z and its side =

1 It will be observed that Diophantus chooses, as his given numbers, numbers such
as will make the resulting “pure” quadratic equation give a ¢ rational ” value for x. If
the given numbers are 2a, 28, respectively, we assume é+x, &—x as the sides of the
cubes, and we have

283+ 6bx%=1a,
so that x*=(a—4%/34; x is therefore ‘‘irrational” unless (2-4%)/36 is a square. In
Diophantus’ hypothesis  is taken as 185, and 4 as 5, and the condition is satisfied. He
shows therefore incidentally that he knew how to find two numbers @, 4 such that
(a - 23)[36 is a square (Loria, Le scienze esatte nell’ antica Grecia, Libro V. pp. 129-30).
A similar remark applies to the next problem, 1v. 2.
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4. To add the same number to a square and its side re-
spectively and make them the same! [Z.e. make the first product a
square of which the second product is the side].

Square 2% with side . :

Let the number added to 4? be such as to make a square
say 342

Therefore 34 + x = side of 42 = 22, and x=1.

The square is ;, its side g, and the number %

5. To add the same number to a square and its side and make
them the opposite?,
Square 2% the number a square number of times 22
minus x, say 41— x.
Hence 542 — r=side of 44* =22, and xr = 4.
The square is 225, its side g, and the number %
6. To add the same square number to a cube and a square
and make them the same.
Let the cube be 2* and the square any square number of
times 2%, say 94
We want now a square which when added to 92* makes
a square. Take two factors of g, say 9 and I, sub-
tract 1 from g, take half the difference and square.
This gives 16.
Therefore 1642 is the square to be added.
Next, 2* + 162 = a cube = 827, say; and x =18,

The cube is therefore @, the square 2% and
343 9 s

the added square number 409

1 In this and the following enunciations I have kept closely to the Greek partly
for the purpose of showing Diophantus’ mode of expression and partly for the brevity
gained thereby.

In Prop. 4 to ‘‘make them the same” means what 1 have put in brackets ; to ““make
them the opposite” in Prop. 5 means to make the first product a side of which the second
product is the square.

2 Nesselmann solves the problem generally, thus (Notes in Zeitschrift fiir Math. u.
Physik, XXXvIL (1892), Hist. litt. Abt. p. 162).

22+ y=\/(x+y); therefore x4+ 222y +9?=x+y, or 32~ (1 - 22?) y=x— 2%,

Solving for y, we obtain, as one of the solutions,

ol T Iix—u3
=R Ed \/(4+x x)'

. g 1 2
To make the expression under the radical a square we put ; +x-x?=(mx_£) '
m+1 mi+md-m—1

whence £= gy YT T A

. Diophantus’ solution corresponds to 7 =2,
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7. To add the same square number to a cube and a square
respectively and make them the opposite.
For brevity call the cube (1), the second square (2) and
the added square (3).
Now, since (2) + (3) = a cube, suppose (2) +(3) = (1).
Since a*+6°+2ab is a square, suppose (1)=(a’+ 4%,
(3) = 2a¥, so that the condition that (1) +(3) = square
is satisfied.
But (3) is a square, and, in order that 2a6 may be a square,
we put a=x, b=2x.
Suppose then (1)=*+(22) =354 (3)=2.x.2r=42";
therefore (2) =% by subtraction.
But 542 is a cube; therefore x =3,
and the cube (I)= 125, the square (2)=25, the
square (3)= 100.
Otherwise thus.
Let (2)+ (3)= (1).
Then, since (1) +(3) = a square, we have to find two squares
such that their sum + one of them = a square.
Let the first of these squares be 2, the second 4.
Therefore 24° + 4 =square = (2x — 2)}, say; thus xr =4,
and the squares are 16, 4.
Assume now (2) = 42 (3)= 1642
Therefore 2047 is a cube, so that x = 20;
the cube (1) is 8000, the square (2) is 1600, and the
" added square (3) is 6400.

8. To add the same number to a cube and its side and make
them the samel.
Added number #, cube 82% say. Therefore second sum
= 3%, and this must be the side of 8%+ .
That is, 848+ x =272 and 192°=x, or 194%= 1.

1 Nesselmann (op. cit. p. 163) gives a more general solution.
We have 2%+ y=(x+y)3, whence 1 =322+ 32y + 32
Solving for y, we find

D TRV (L) EEIEPERN OIS
2m? - 672

N o [\ __amn
Lastly, putting 4—3x’—(2 ”x) » we find x_3717—+m?’ N(g=32Y) == by

— 6mn = (m? - 3n2)
ST g 1K
always be positive, [z must be >3+a/12; Diophantus’ solution corresponds to m=7,
n=1.

and y= If the positive sign be taken, then, in order that y ‘may



BOOK 1V 171

But 19 is not a square. Hence we must find, to replace
it, some square number. Now 192® arises from
27x° — 82°, where 27 is the cube of 3, and 8 the cube
of 2. And the 3x comes from the assumed side 2x,
by increasing the coefficient by unity.

Thus we must find fwo consecutive numbers such that their
cubes differ by a square.

Let them be 3, y + 1.

Therefore 35* + 37 + 1 = square = (1 — 2y)}, say, and y = 7.

Going back to the beginning, we assume added number
=z, side of cube = 7z.

The side of the new cube is then 8, and

3432+ xr=5122%
Therefore 2* = 113, and xr = ;.

The cube is 5%37, its side 173, and the added

number %
9. To add the same number to a cube and its side and make
them the opposite™. :

Suppose the cube is 843 its side being 2z, and the added
number is 274%—2x. (The coefficients 8§, 27 are
chosen as cube numbers.)

Therefore 3524° — 2x =side of cube 274°= 3, or 352°=35.

This gives no rational value.

But 35=27 +8,and 5=3+2.

Therefore we have to find two cubes such that their sum
has to the sum of their sides the ratio of a square
to a square?®.

Let sum of sides=any number, 2 say, and side of first
cube = z, so that the side of the other cube is 2 — 2.

1 Nesselmann (op. cit. p. 163) solves as follows. The equation being x+y=(3+y)3,

put =2~ a3, and the equation becomes x+z-13=23, or 33+ s3=x+3.
Dividing by x+2, we have 22— xz+32=1.

Solving for x, we obtain x=£ {3=4/(4 - 32%)}.

. m 2 4mn
To make 4- 322 a square, equate it to (; z—a) ; therefore Z=m’+3n” so that

_2mnt(m? - 3n?)
T mli3n?
corresponds to m=12, n=1.
2 It will be observed that here and in the next problem Diophantus makes no use of
the fact that

,and y=z-x% If the positive sign be taken, Diophantus’ solution

B+ )z +y)=a2- 2y + )~
Cf. note on 1v. 11 below.
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Therefore 8 — 122 + 62° must be twice a square.

That is, 4 — 62 + 327 = square = (2 — 42)?, say; #=1%, and
the sides are 13, 1§.

Neglecting the denominator and the factor 2 in the
numerators, we take 5, 8 for the sides.

Starting afresh, we put for the cube 1252° and for the
number to be added 5124®—5x; we thus get

63724 — sx=8x, and x = 1.

is 125 jtsside S h 2078
The cube is 2 its side = and the added number343

1o. To find two cubes the sum of which is equal to the sum
of their sides.

Let the sides be 2z, 3.

This gives 354% = 5x; but this equation gives an irrational
result.

We have therefore, as in the last problem, to find two
cubes the sum of which has to the sum of their sides
the ratio of a square to a square.

These are found, as before, to be 53, 83,

Assuming then 5z, 8z as the sides of the required cubes,
we obtain the equation 6374*=13%, and x={.

The cubes are 1—25, 512
343" 343

! Here, as in the last problem, Diophantus could have solved his auxiliary problem
of making (#*+3%)/(x +y) a square by making x2 - xy +? a square in the same way as in
Lemma I. to V. 7 he makes 2+ xy + 3 a square.

The original problem, however, of solving

BtpP=x+y
can be more directly and generally solved thus. Dividing out by (x +), we must have
A-ay+y=1.

This can be solved by the method shown in the note to the preceding problem.

Alternatively, we may (with Wertheim) put #%- xy+3%=(x+4y)?, and at the same
time 1= =(x+4y).

Thus we have to solve the equations

x(x+2é)=y(x—k”)}

xt+hy==%=1
i e 1424
hich =+t =+
el T IO ARy

where £ remains undetermined.

Diophantus’ solution is obtained by taking the positive sign and putting = or by
4

taking the negative sign and putting 2= -%.
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11. To find two cubes such that their difference is equal to
the difference of their sides.
Assume 2z, 3x as the sides.
This gives 194*=x, and x is irrational.
We have therefore to find two cubes such that their
difference has to the difference of their sides the
ratio of a square to a square’. Let them be (z+ 1)}
25 so that the difference of the sides may be a square,
namely 1.
Therefore 32°+ 32+ 1 =square =(I — 23)? say, and 2= 7.
Starting afresh, assume 7%, 8x as the sides; therefore
1692° =x, and x = 5.
The sides of the two cubes are therefore 113’ %

1 Nesselmann (Die Algebra der Griechen, pp. 447-8) comments on the fact that
Diophantus makes no use here of the formula (x* - 33)/(x - y) =x?+ xy + 52, although he
must of course have known it (it is indeed included in Euclid’s much more general
summation of a geometrical progression, 1X. 35). To solve the auxiliary problem in
1v. 11 he had only to solve the equation

2%+ xy +y*=a square,
which equation he does actually solve in his Lemma I. to V. 7.
The whole problem can be more simply and generally solved thus. We are to have

B-P=x-y,
or ‘ D2txy+yi=1
Nesselmann’s method of solution (cf. note on 1v. g) gives x=£{ -y=J4-37},
_ 4mn _ =a2mnx(m?-3n?) . q oo s obtained
and hence y—m2+3n3' x= pr e . Diophantus’ solution is obtained by

putting m =1, »=2 and taking the lower sign.
Wertheim’s method (see note on preceding problem) gives in this case
-2 2k-1
=r e Tt
where £ is undetermined.
If we take the negative sign and put 2= -3, we obtain Diophantus’ solution,
Bachet in his notes to 1v. 10, 11 solves the problems represented by
i BrP=mx+y)
subject to the condition that m is either a square or the third part of a square. His method
corresponds to that of Diophantus. He does not divide out by x+ », and he reduces the
problem to the subsidiary one of finding £, 7 such that the ratio of £ to £+7 is the
ratio of a square to a square. His assumptions for the “sides,” £, 7, are of the same kind
as those made by Diophantus; in the first problem he assumes x, 6 ~x and in the second
%, x+2. In fact, it being given that (23+38)/(x+y)=a, Bachet assumes x+y=3 and
thus obtains
34~ 3z +3%=a,
which equation can easily be solved by Diophantus’ method if @ is a square or triple of a
square.

Fermat observes that the dwpioubs of Bachet is incorrect because not general. Tt
should be added that the number (7) may also be the product of a square number into a
prime number of the form 3#+1, as 7, 13, 19, 37 etc. or into any number which has no
factors except 3 and prime numbers of the form 37+ 1, as 21, g1 etc. ““The proof and
the solution are to be obtained by my method.”
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12. To find two numbers such that the cube of the greater
+ the less =the cube of the less + the greater™.

Assume 2z, 32 for the numbers.

Therefore 272+ 2x=8x*+ 32, or 192°=x, and x is
irrational. .

But 19 is the difference of two cubes, and 1 the difference
of their sides. Therefore, as in the last problem,
we have to find two cubes such that their difference
has to the difference of their sides the ratio of a
square to a square®

The sides of these cubes are found, as before, to be 7, 8.

Starting afresh, we assume 7%, 82 for the numbers; then
3432+ 8x=35122°+ 7z, and x = .

The numbers are l, e
13" 13
13. To find two numbers such that either, or their sum, or
their difference added to unity gives a square.

Take for the first number any square less 1; let it be,
say, 9x*+ 6x. But the second + 1=a square; and
first + second + 1 also=a square. Therefore we must
find a square such that the sum of that square and
gx®+ 61 =a square.

Take factors of the difference 9*+ 6z, say 9z + 6, x;
the square of half the difference between these factors
=162+ 24x +0.

Therefore, if we put for the second number this expres-
sion minus 1, or 162* + 24x + 8, three conditions are
satisfied.

The remaining condition gives difference + 1 = square,
or 72% + 18x + 9 =square = (3 — 3%, say.

Therefore =18, and (3024, 5624) is a solution.

14. To find three square numbers such that their sum is equal
to the sum of their differences.

Sum of differences = (greatest) — (middle) + (middle) —
(least)+(greatest) — least=twice difference of greatest
and least,

This is equal to the sum of all three, by hypothesis.

Let the least square be 1, the greatest 22+ 2x+1;

1 This problem will be seen to be identical with the preceding problem.
2 See note, p. 173.
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16. To find three numbers such that their sum is a square,
while the sum of the square of each added to the next following
number gives a square.

Let the middle number be any number of #’s, say 4x;
we have therefore to find what square + 4% gives
a square. Split 4x into two factors, say 2z, 2, and
take the square of half their difference, (x — 1) This
is the square required.

Thus the first number is x — 1.

Again, 1622 + third number = a square. Therefore, if we
subtract 162* from a square, we shall have the third
number. Take as the side of this square the side of
1622, or 4x, plus 1.

Therefore third number = (4x + 1) — 162 =8x + 1.

Now the sum of the three numbers=a square; therefore
132 =a square = 16gJ?, say’.

The numbers are then 13y* — 1, 5292 1045*+ I.

Lastly, (third)*+ first = a square.

Therefore 10816y* 4+ 221)* =a square,

or 1081642 + 221 = a square = (104y + 1)}, say.

Therefore y =223 = &3,

36621 157300 317395> . g
and (_2704, =St al Lo solution.

17. Tofind three numbers such that their sum is a square, while
the square on any one mizus the next following also gives a square.
The solution is precisely similar to the last.

whence it follows that a —~8=a - 4. From this condition and a +g8=¢, we obtain

a=2(e=b+d, B=1(-a+b+o.

Thus z—\/< ) \/ (@a-b+c)(-atb+o) )
| 2(e+b-0
x_g_\/{(a—b+:)(a+b—t) ﬂ \/ (—a+b+t)(a+b r)}
i 2(—a+b+c) b 2(a-8+¢) -
Now x, y, z must all be rational, and this is the case if
~a+btc=2gr, a-btc=2rp, a+b-c=12py,

where 2, ¢, » are any integers.

This gives a=plg+r), b=g(r+p), c=r(p+gq);
a fact which can hardly have been unknown to Diophantus, since his values e=27, =32,
¢=35 correspond to the values p=3, g=4, =35 (Loria, Joc. cit.).

1 Diophantus uses the same unknown s for y as for x, writing actually xal ylverac &

A¥ @, literally “and x becomes 134%.”
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The middle number is assumed to be 4#. The square
which exceeds this by a square is (z+ 1)3, and we
therefore take x + 1 for the first number.

For the third number we take 162® — (42— 1)? or 82— 1.

The sum of the numbers being a square,

132 = a square = 169J?, say.
The numbers are then 133% + 1, 5257, 10452 — 1.
Lastly, since  (third)® — first =a square,
10816)* — 221)* = a square,
or 10816y® — 221 =a square = (104 — 1)} say.
Thus y=441,

and (117&9569» 6::861962, r;zgfgs is a solution,

18. To find two numbers such that the cube of the first added
to the second gives a cube, and the square of the second added to
the first gives a square.

First number x. Therefore second is a cube number
minus 2%, say 8—z°,

Therefore +°— 164° + 64 +x=a square=(2°+ 8)}, say,
whence 324%=z, or 324°=1.

This gives an irrational result; x would however be
rational if 32 were a square.

But 32 comes from 4 times 8. We must therefore sub-
stitute for 8 in our assumptions a cube which when
multiplied by 4 gives a square. If y* is the cube,
4)° = a square = 16y? say; whence y =4.

Thus we must assume z, 64 —2® for the numbers.

Therefore #°— 1284° + 4096+ = a square = (2* + 64)?, say ;
whence 2562*=x, and x = {4

The numbers are & 262143

16° 4096 °

19. To find three numbers indeterminately? such that the
product of any two increased by 1 is a square.
Take for the product of first and second some square
minus 1, say #* + 2x; this satisfies one condition.
Let second = x, so that first =x+ 2.
Now product of second and third + I =a square; let the
1 The expression is & 7 doplare, which is defined at the end of the problem to mean

in terms of one unknown (and units), so that the conditions of the problem are satisfied
whatever value is given to the unknown.

H. D. 12
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square be (3x+ 1)} so that product of second and
third = 92* + 6x;

therefore third=9x+ 6.

Also product of third and first + 1 =a square; therefore
9% + 24x + 13 = a square.

Now, if 13 were a square, and the coefficient of x were
twice the product of the side of this square and the
side of the coefficient of %, the problem would be
solved indeterminately.

But 13 comes from 2.6+ 1, the 2 in this from twice 1,
and the 6 from twice 3. Therefore we want two
coefficients (to replace 1, 3) such that the product
of their doubles + 1 =a square, or four times their
product + I = a square.

Now four times the product of any two numbers plus the
square of their difference gives a square. Thus the
requirement is satisfied by taking as coefficients any
two consecutive numbers, since the square of their
difference is 1. [The assumption of two consecutive
numbers for the coefficients simultaneously satisfies
the second of the two requirements indicated in the
italicised sentence above.]

Beginning again, we take (x+ 1)*—1 for the product of
first and second and (2x+ 1)*—1 for the product of
second and third.

Let the second be #, so that first = x4 2, third =42+ 4.

[Then product of first and third + 1 = 442+ 12x + 9, and
the third condition is satisfied.]

Thus the required indeterminate solution!® is
(x+2, x, 4x+4).

1 The result obtained by Diophantus really amounts to the more general solution

L

a’x+2a, x, (@+1)*x+2(a+1).

With this solution should be compared that of Euler (4/geéra, Part 11. Art. 231).
To determine x, y, 2 so that

xy+1, y2+1, zx+1 are all squares.

Suppose mt1=p% yrti=g?
so that x=(g-1)[2, y=(g°- 1)[e.
2 =
* Therefore xy-l-l-(p l) (q l)+ 1=a square,
or (p*-1) (g - 1) +22=a square
=(z-7)? say; [Euler has (z+7)%}
s t= Z_LM_‘)

where any numbers may be substituted for p, q,
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20. To find four numbers such that the product of any two
increased by unity is a square.
For the product of first and second take a square minus 1,
say (x+ If— 1=2%+2x.
Let first = z, so that second =z + 2.

For example, if 7=p¢ + 1, we shall have
PR Y 7SV Vot S/ 21 1Vt

T2(gt) (e+er (227
11.  But, if whole numbers are requived, we put xy+ 1= p%, and assume s=x+y+q.
We then have xz+ 1=+ xytgx+1=a+gx+3,
and riti=ay+itegyti=y> gy

These expressions are both squares if g= + 2.

Thus a solution is obtained from xy=2%— 1 combined with either

z=x+y+12p, or z=x+y—2p.

We take a certain value for g2, split 2 -1 into two factors, take these factors for the
values of x, y respectively, and so find z.

For example, let p=3, so that p>— 1=8; if we make x=12, y=4, we find z=either 12
or 0; and in this case x=2, y=4, z=12 is the solution.

If we put £2=(£+1)3, we have xy=§+12¢; and if we put x={+2, y=§, we have

s=¢f+2+it2(E+1)=4f+4 or 0.

The solution is then (£+ 2, £, 4+ 4), as in Diophantus.

Fermat in his note on this problem shows how to find three numbers satisfying not
only the conditions of the problem but three more also, namely that each of the numbers
shall itself when increased by 1 give a square, i.c. to solve the equations

wHi=23, G+i1=5 H+i1=4,
E+i=13, n+1=97% {+1=ud

Solve, he says, the p: problem of Diophantus in such a way that the terms
independent of x in the first'and third of the numbers obtained by his method shall be
such as when increased by 1 give a square. It is easy to find a value for a such that

2a+1 and 2 (@+ 1)+ 1 are both squares. Fermat takes the valne 1a=5, which satisfies

E 36
the conditions, and the general expressions for the three numbers sought are therefore
169 13 7225 85
T PAET AT P &

Each of these has, when increased by 1, to become a square, that is, we have to solve the
triple-equation

169 49 _
5:8.{"+ 36_“’
rt1=2%
7225, 1230 _ e
5184‘r+ 36

Fermat does not give the solution; but it is effected as follows.
§2t
Multiplying the third expression by 36 and the first by oh 36 (in order that the

absolute terms in the two may be equal), we have to solve
12—2
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For the product of first and third take (2x+1)2—1, or
42"+ 4, the coefficient of » being the number next
following the coefficient (1) taken in the first case,
for the reason shown in the last problem;

thus third number = 4x + 4. ;

Similarly take (32 + 1! — 1, or 92?4+ 62, for the product of
first and fourth; therefore fourth =gx+6.

And product of third and fourth + 1

=(4x + 4)(9x +6) + 1 = 362*+ 60x + 25,
which is a squarel,

x+1=22
2
(ﬁ ) r+2r=u?
RN ()
/85\2
\—‘§> xt121=2/2
12
In order to solve by the method of the triple-equation, we make x+ 1 a square by
putting x=32+2y.

Substitute this value in the other two expressions, and for co ience multiply each
by 144; this gives

(143) (2+29) + (132)2=2 square}
(85)2 (#2+ 2p) + (132)2=a square.
The difference=(y*+2y) (3., 4143 - ) (85 143)

7
_138 (451 2. 452)
=80, (B ypdon)
AR
The square of half the difference of the factors equated to the smaller expression gives
143

=E L ‘52) (”3) (72 +29) +(132)2;

"'8—2;07%6; and we find that s

50193144576
=242 bbb 55 e .1
s ot

whence y= -

It is easily verified that

(13) At (643149) (85 12— [ 1842375\
85085 85085
so that the value of x satisfies the three equations.
The numbers satisfying Fermat’s six conditions are then

169 St 100604981’ x=50123144576, and 1225 +85 48192621
51847 36 171348100 7239457223 5184 36 4008004 °

! This results from the fact that, if we have three numbers x, ¥, 2 such that
ay+i=(mr+1)? and xz+1={(m+1)x+1}2,

then ye+r={m(m+ 1)+ (2m+ 1)}2
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Lastly, product of second and fourth + 1 =92? + 242 + 13;
therefore  9#' + 24 + 13 = square = (32 — 4)?, say;
which gives xr=4.

All the conditions are now satisfied?,

1 33 68 105 . st
and ¢, 3%, 16, ¢ is the solution2
! The remaining condition was: product of second and third + 1 =a square. That this
is satisfied also follows from the general property stated in the last note. In fact
- (x+2) (4x+4) +1=422+ 12249,
which is a square.
2 With this solution should be compared Euler’s solution (4/geéra, Part 11. Art. 233)
of the problem of finding x, y, 2, » such that the six expressions
xy+a, yz+a, zx+a, xv+a, yvta, zwta
are all squares. The solution follows the method adopted to solve the corresponding
problem with three unknowns x, y, 2 only. See note on 1I1. 10 above.
If we begin by supposing xy+a=p?% and take z=x+y+2p, the second and third
expressions become squares (vide note on 1II. 10, p. 160).
If we further suppose z=x+y—12p, the fourth and fifth expressions also become
squares (véde the same note).
Consequently we have only to secure that the sixth expression 27+« shall be a square;
that is,
22+ 2xy+ 9%~ 492 +a=a square,

or (since xy +a=p?% 2% — 22y +y%— 3a=a square.
Suppose that (x-y)2-3a=(x-y-9)?;
therefore x—y=(g%+3a)/2g,
o —y+7 +3a
Consequently p’:xy+a=}ﬂ+7_:9—3a y+a.
If we put p=y +r, we have %
= od
ary+2= 7 y+a,

2972 - 2ag
7F-4gr+3a’

from which 2, x, and therefore z, © also, are found in terms of g, 7, where ¢, 7 may have
any values provided that x, y, z, v are all positive.

Euler observed that this method is not suited for finding integral soluuons, and,
pursuing the matter further, he gave the following very elegant solution of Dlophantus
actual problem (the case where a=1) in integers (‘‘Miscellanea analytica” in Com-
mentationes arithmeticae, 1. pp. 45-6).

Six conditions have to be satisfied. If x, 3, z, v are the required numbers, let x=m,
y=n, where m, n are any integers such that mn+1 =2

Then put z=m+n+ 2/, and three conditions are already satisfied, for

xy+ 1=mn+1=17% by hypothesis,
xzt1=m{mtnt+al)+i1=({+m),
ya+1=n(m+n+ad)+1=(+n)
The three conditions remaining to be satisfied are
Xv+1=mv+1=a square,
yv+1=nv+1=a square,
2w+ 1=(m+n+2/)v+1=a square.

Let us make the continued product of these expressions a square,

and y=
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21. To find three numbers in proportion and such that the
difference of any two is a square.
Assume x for the least, x + 4 for the middle (in order
that the difference of middle and least may be a
square), # + 13 for the greatest (in order that differ-
ence of greatest and middle may be a square).

This product will be found to be
1+2(mtntd)ot{(m+n+l)'—1} o+ mn(m+n+t2))2?
2
Let us equate this to g! +(m+n+lv- iv’s , in order that the terms in 2, 22 as well
as the absolute term may vanish ; therefore

mn (m+n+al)= - (m+n+l)+i7},

whence iy:(m+n+1)+mn(m+n+zl)
=(mn+1)(m+n+l)+imn
=P(m+n+l)+imn
d =1(+m) (I +n),
and therefore v=4/(l+m) (I +n).

It is true that we have only made the product of the three expressions mz+1, #v+1,
(m+#n+2])v+1 a square; but, as the value of » has turned out to be an integral number,
so that all three formulae are prime to one another, we may conclude that each of the
expressions is a square.

The solution is therefore

x=m, y=n, z=m+n+2l, v=y4l(l+m)(l+n),
where mn+ 1=,

In fact, while three of the conditions have been above shown to be satisfied, we find,
as regards the other three, that

av+1=gdm{{+m)(I+ny+1=(22+2/m~1)?,
yw+i=4n(l+m)(+n)+1=(2R+2ln-1)?,
wri=4l(m+n+2y(I+m)(I+n)+1=(422+2lm+2/n—-1)2.

It is to be observed that / may be either positive or negative.

Ex. Letm=3, =8, so that /= %35,

If /= + 5, the solution is 3, 8, 21, 2080 ; if /="~ 5, the solution is 3, 8, 1, 120.

Fermat shows how to solve this problem, alternatively, by means of the “triple-equation.”

Take threc numbers with the required property, e.g. 3, 1, 8. Let x be the fourth, and
we have then to satisfy the conditions

3x+1=42 x+1=08 Sxt+i=un

Put x=3%+ 1y, so as to make the second expression a square, and then substitute the
value of x in the other two. We have then the double-equation

3(P2+2)+1=02
8(»+2y)+i1=2n"

The difference= 5 (32 +29) =5y (y +2).

We put then Gr+1)?=8 (2 +w)+1,
whence y=10, and ¥=3+ 2y=120, which value satisfies the triple-equation.

The four numbers are then 3, 1, 8, 120, which solution is identical with one of those
oltained by Euler as above,
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If now 13 were a square, we should have an indeterminate
solution satisfying three of the conditions.

We must therefore replace 13 by a square which is the
sum of two squares. Any rational right-angled
triangle will furnish what is wanted, say 3, 4, 5;

we therefore put for the numbers z, x + 9, x+ 25.

The fourth condition gives

r(x+25)=(xr+9)}, and x=8L.
8r 144 256 : .
Thus =g -;— is a solution.
22. To find three numbers such that their solid content! added
to any one of them gives a square.

Assume continued product 2* 4 2., first number 1, second
number 4z + 9, so that two. conditions are satisfied.

The third number is then (2* + 2x)/(4x + 9).

This cannot be divided out unless 2*:4xr=2x:9 or,
alternately, #* : 2r =42 :9; but it could be done if 4
were half of g.

Now 4r comes from 6x — 2z, and the 6x in this from
twice 3z; the 9 comes from 32

Therefore we have to find a number # to replace 3 such
that 2m — 2 = }m*: thus m* = 4gm — 4, whence® m = 2.

We put therefore for the second number (x + 2)* — (#* + 22),
or 2x + 4; the third number is then

(#*+ 22)/(2x + 4) or }z.

Lastly, the third condition requires

2*+2x + $xr=a square = 447, say.
Therefore x=§,

and (1, 3—64, 2—2) is a solution?.

1 § é abriw orepeds, * the solid (number formed) from them " =the continued product
of the three numbers.

2 Observe the solution of a mixed quadratic.

3 Fermat gives a solution which avoids the necessity for the auxiliary problem.

Let the solid content be 4% — 2., the first number 1, and the second number 2x; two
conditions are thus satisfied.

The third number is now 22 — 2x divided by 2x. 1, or E.x- 1 ; and the third condition
gives
- g:— 1=2a square.
Now x must be greater than z ; we therefore put
at- %x— 1=(x-m),

where  is greater than 2,



184 THE ARITHMETICA

23. To find three numbers such that their solid content minus
any one gives a square’,
First number z, solid content #*+ x; therefore product of
second and third =z + 1. :
Let the second be 1, so that the third is x + 1.
The two remaining conditions require that
e —

s : } shall both be squares. [Double-equation.]
The difference =x =} .2z, say;
thus (x+$P=22+x—1,and xr =17,
The numbers are %7, % %)
24. To divide a given number into two parts such that their
product is a cube minus its side.
Given number 6. First part z; therefore second =6 — z,
and 6x — 2% = a cube minus its side.
Form a cube from a side of the form mx— 1, say 2x — 1,
and equate 6x — 2* to this cube miénus its side.
Therefore 84° — 1222 + 4xr=6x— 22

1 A remarkable problem of this kind (in respect of the apparent number of conditions
satisfied) is given by De Billy in the Jrventum Novum, Part 1. paragraph 43 (Oeuvres
de Fermat, 111. p. 352): To find three numbers £ », ¢ (£, §, » being in ascending order
of magnitude) such that the following nine expressions may become squares :

(1) &E-&15, (4) m—E-£n8, (7)) En-fnfy
(2) n-&ng  (5) $-E-8n5,  (8) wi-fng;
(B) s-&a5,  (6) n-$-E1%  (9) w*-ins

Take x, 1, 1 -x as the values of £, 7, { respectively. Then six conditions, namely,
(1) (3), (4), (6): (1), (8), are all automatically satisfied.
By conditions (2) and (9) alike,
1-x+a%=a square.
And, by (5), 1-3x+x%=a square.
Solving this double-equation in the usual way, we get x=§, and the numbers are
sk
Another solution can be obtained by putting y+% in place of x in the two expressions,

and so on. Cf. note on i11. 18 above.

It would appear from a letter from Fermat to De Billy of 26 Aug. 1659 (Ocuwres, 11.
Pp. 436-8) that this problem and the above single solution were De Billy’s own. De Billy
had supposed that this was the only solution, but Fermat observed that there were any
number, as the above double-equation has any number of solutions. Fermat gave

10416 41449
(51865' £ 51865

) as another solution.
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Now, if the coefficient of » were the same on both sides,
this would reduce to a simple equation, and x would
be rational.

In order that this may be the case, we must put # for 2
in our assumption, where 3m—m =6 (the 6 being
the given number in the original hypothesis). Thus
m=3.

We therefore assume

(37— 1P = (3x— 1) = 65— 24

or 272 = 2722+ 6x = 6x — 22,

and r=128.

26 136
The parts are =, =22,
¢ p 7 27

25. To divide a given number into three parts such that their
continued product gives a cube the side of which is equal to the
sum of the differences of the parts.

Given number 4.

Since the product is a cube, let it be 8% the side of
which is 2z

Now (second part) — (first) + (third) — (second) + (third)
— (first) = twice difference between third and first.

Therefore difference between third and first = half sum of
differences = x. )

Let the first be any multiple of x, say 2x; therefore the
third = 3x.

Hence second = 82%/62* = $x; and, if the second had lain
between the first and third, the problem would have been
solved.

Now the second came from dividing 8 by 2. 3, and the
2 and 3 are not two numbers at random but con-
secutive numbers.

Therefore we have to find two consecutive numbers such
that, when 8 is divided by their product, the quotient
lies between the numbers.

Assume m, m+ 1; therefore 8/(m*+ m) lies between
m and m+ 1.

Therefore ;—8~ +I>m+1,
mt+ m
so that m: 4 m+ 8 >md+2m+m,

or 8 > w + m,
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I form a cube such that it has 73, »? as terms, that is, the
cube (#2 + }), which is greater than ## + 2 and I put

(m+3y=8;

therefore m + 4 =2, and m = §.

Assume now for first number §z; the third is §z, and
the second is 2z.

Multlplymg throughout by 15, we take 25z, 27z, 40z,
and the product of these numbers is a cube the
side of which is the sum of their differences.

The sum = 92x = 4, by hypothesis.

Therefore x = oy,

25 27 40
and (23 =5 23) are the parts required.
[N.B. The condition 8/(m*+m)<m+1 is ignored in

the work, and is ¢ncidentally satisfied.]

26. To find two numbers such that their product added to
either gives a cube.
Let the first number be of the form 'z, say 8x.
Second 2 — 1. Therefore one condition is satisfied, since

824*— 8x + 8xr=a cube.

Also 82° - 8x+2*— 1 =a cube=(2x — 1)}, say.
Therefore 132° = 14%, and ¥ =14.

112
The numbers are 22, 2L

13° 169

27.. To find two numbers such that their product minus either
gives a cube.
Let the first be of the form 2z, say 8z, and the second
22+ 1 (since 82° + 82 — 8x=a cube).
Also 82°+48x—2*—1 must be a cube, “ which is impossiblel.”

! Diophantus means that, if we are to get rid of the third power and the absolute
term, we can only put the expression equal to (2x—1)%, which gives a negative and
therefore “impossible ” value for 2. But the equadtion is not really impossible, for we can
get rid of the lerms in 2% and x? by putting

8x3+8x—a2-1= (zx— ——) whence x= 2L
13752°

or we can make the term in x and the absolute term disappear by pulting

3
813+ 8x—2%— r=(§x— r) , whence x=540,
E 3 296

Diophantus has actually shown us how to do the former in 1v. 25 just preceding.
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Accordingly we assume for the first number an expression
of the form #3x+ 1, say 8x+ 1, and for the second
number #? (since 84° + 22 — 2 = a 'cube).

Also 82*+2? — 8x — 1 = a cube = (22— 1)}, say.

Therefore x = 14,

and the numbers are 125, ;gg

28. To find two numbers such that their product % their
sum gives a cube.

Assume the first cube (product +sum) to be 64, and the
second (product — sum) to be 8.

Therefore twice sum of numbers =64 —8 =56, and the
sum=28, while the product + the sum =64, therefore
the product = 36.

Therefore we have to find two numbers such that their
sum is 28 and their product 36. If 14+, 14— are
the numbers?, we have 196 — 42 = 36, or 2* = 160; and,
if 160 were a square, we should have a rational
solution.

Now 160 arises from 14°—36, and 14=%.28=1.56
=1} (difference of two cubes); also 36 =14} (sum of
the cubes).

Therefore we have to find two cubes such that

(4 of their difference)® — § their sum =a square.

Let the sides of the cubes be (2 + 1), (2 — 1);

therefore } of difference = 1§2* + §, and the square of this
is 2tz + 1322+ §;

§ the sum of the cubes is 2* + 32;

therefore 2324+ 112* + } — 5° — 32 = a square,

or 9z* +62* 4+ 1 — 428 — 122 =a square =(32° + 1 — 62)’, say;

whence 322 = 362° and 2=§.

The sides of the cubes are therefore 47, §, and the cubes
¥, sts-

Put now product of numbers + their sum = 4213 and pro-
duct — sum = z15.

Therefore their sum = 2486 and their product = AL,

Now let the first number = x + half sum = + 12328,

and the second = half sum — r=1228 — x;

therefore 1B0TO8S 2% = 2ABT,
and 2621444° = 250000.

1Cf 1 27,
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Therefore x = §34,

and (%2—:, ;f—:) is a solution.

Otherwise thus.

If any square number is divided into two parts one of
which is its side, the product of the parts added to
their sum gives a cube.

[That is, # (#* — x) + #* —x + x =a cube.]

Let the square be 2% and be divided into the parts x, 22—x.

Then, by the second condition of the problem,

28 —2°— 2* = 2°— 22°=a cube (less than 2*)=(} x)’, say.

Therefore 82° — 162 = 23, so that x = 1§,

and (g, %4) is a solution.
29. To find four square numbers such that their sum added to
the sum of their sides makes a given number?
Given number 12.
Now 2*+x + } =a square.
Therefore the sum of four squares + the sum of their sides
+ I=the sum of four other squares=13, by hypothesis.
Therefore we have to divide 13 into four squares; then, if
we subtract § from each of their sides, we shall have
the sides of the required squares.

! On this problem Bachet observes that Diophantus appears to assume, here
and in some problems of Book V., that any number not itself a square is the sum of
two or three or four squares. He adds that he has verified this statement for all
numbers up to 325, but would like to see a scientific proof of the theorem. These
remarks of Bachet’s are the occasion for another of Fermat’s famous notes: *“I have
been the first to discover a most beautiful theorem of the greatest generality, namely this:
Every number is either a triangular number or the sum of two or three triangular
numbers ; every number is a square or the sum of two, three, or four squares; every
number is a peutagonal number or the sum of two, three, four or five pentagonal
numbers; and so on ad #nfinitum, for hexagons, heptagons and any polygons whatever,
the enunciation of this general and wonderful theorem being varied according to the
number of the angles. The proof of it, which depends on many various and abstruse
mysteries of numbers, I cannot give here; for I have decided to devote a separate and
complete work to this matter and thereby to advance arithmetic in this region of inquiry
to an extraordinary extent beyond its ancient and known limits.”

Unfortunately the promised separate work did not appear. The theorem so far as it
relates to squares was first proved by Lagrange (Nowwv. Mémoires de P Acad. de Berlin,
année 1770, Berlin 1772, pp. 123-133; Oexvres, 111. pp. 18g—201), who followed up
results obtained by Euler. Cf. also Legendre, Zaklentheorie, tr. Maser, 1. pp. 212 sqq.
Lagrange’s proof is set out as shortly as possible in Wertheim’s Diophantus, pp. 324-330.
The theorem of Fermat in all its generality was proved by Cauchy (Oexwres, 11¢ série,
Vol. vi. pp. 320-353); cf. Legendre, Zaklentheorie, tr. Maser, 11. pp. 332 sqq.
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Now 13=4+9=(§2+38) + (34 + 51),
and the sides of the required squares are 1}, #;, 13, 13,

the squares themselves being %, 1%90, f_g%, %

30. To find four squares such that their sum minus the sum of
their sides is a given number.

Given number 4.

Now 22—z + } = a square.

Therefore (the sum of four squares) — (sum of their sides)
+ 1=the sum of four other squares=3, by hypothesis.

Divide 3 into four squares, as %, 3%, §%, §¢.

The sides of these squares p/us § in each case are the sides
of the required squares.

Therefore sides of required squares are 1}, 13, 31, 17, .

and the squares themselves 12X, 19 441 289
100’ 100’ 100’ 100

31. To divide unity into two parts such that, if given numbers
are added to them respectively, the product of the two sums gives

a square,

Let 3, 5 be the numbers to be added; z, 1 —x the parts of 1.
Therefore (x + 3)(6 — %) = 18 + 34 — 2 =a square = 44, say;
thus 18 + 32 = 522, which does not give a rational result.
Now 5 comes from a square+ I; and, in order that the
equation may have a rational solution, we must sub-
stitute for the square taken (4) a square such that
(the square + 1). 18 + (§)* = a square.

Put (m® + 1)18 + 2} = a square,
or 72m* + 81 = a square = (8 + ), say,
and m=18, m*=324.

Hence we must put
(x+3)(6—2x)=18 + 3xr—2>=3244%

Therefore! 32542— 31— 18=0,
r=g% =%
G TON, ATy
and (%, 55—) is a solution.

Otherwise thus.

The numbers to be added being 3, 5, assume the first of
the two parts to be #— 3; the second is then 4 —x.

Therefore x(9 —x) = a square = 4% say,

and r=4.

But I cannot take 3 from £, and x must be > 3 and < 4.

! Observe the solution of a mixed quadratic equation.
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Now the value of » comes from g/(a square + 1), and, since
x> 3, this square + 1 should be< 3, so that the square
must be less than 2; but, since » <4, the square + 1
must be > %, so that the square must be > §.

Therefore I must find a square lying between 4 and 2, or
between 9 and 128,

190 or 25 satisfies the condition.

Put now % (9 —x)=334%

therefore x =148,

and (2x m) is a solution.

32. To divide a given number into three parts such that
the product of the first and second t the third gives a square.
Given number 6.
Suppose third part = z, second = any number less than 6,
say 2; therefore first part=4—a.
The two remaining conditions require that 8 —2x t+ ¥ =a
square,
8 —
8 —
This does not give a rational result (“is not rational ), since
the vatio of the coefficients of x is not a ratio of a square
to a square.
But the coefficients of x are 2 — 1 and 2 + 1; therefore we
must find a number y to replace 2 such that
(» + 1)/(y = 1) =ratio of square to square = $, say.
Therefore y + 1 =4y — 4, and y =35.
Put now second part = §; therefore first =13 — z.

or ;} are both squares. [Double-equation.]

Therefore & — Bx 4 x = a square.

That is, Gt } are both squares,
65 — 242

or 22? 24x} are both squares.

The dlﬂ”erence =q95i="15.13}
we put therefore } (15 — 13 =65 — 24+, and x=§.

Therefore the required parts are (5 g g)

1 Fermat observes: ‘‘The following is an easier method of solution. Divide the
number 6 into two in any manner, e.g. into § and 1. Divide their product less 1, that is

4, by 6, the given number: the result is ;« Subtracting this first from 5 and then from 1,
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Multiply by 7 and the numbers are 8, 12, and the fraction
is {55 but 8 is not divisible by 12: so multiply by 3,
and (24, 36) is a solution.

Lemma to the next problem.

To find two numbers indeterminately such that their product
together with their sum is a given number.

Given number 8.

Assume the first number to be #, the second 3.

Therefore 32 +x+ 3 =given number=8; =4, and the
numbers are §, 3. y

Now £ arises from (8 — 3)/(3+ 1), where 3 is the assumed
second number.

We may accordingly put for the second number (instead
of 3) any (undetermined) number whatever®; then,
substituting this for 3 in the above expression, we
have the corresponding first number.

For example, we may take x — 1 for the second number;

the first is then g — x divided by z, or ;9; - L

34. To find three numbers such that the product of any two
together with the sum of those two makes a given number®

1 The Greek phrase is édw dpa rdfwper 7ov B% s°° olovdymore (olovdnmore s in Lemma
to IV, 36), ‘“‘If we make the second” (literally “ gu¢ the second a#”) ‘‘any s whatever.”
But the s is not here, as it is in the Lemma to iv. 36, the actual x of the problem, for
Diophantus goes on to say ‘“E.g. let the second be x—1.” In the Lemma to 1V, 34 the
corresponding expression is ‘‘any quantity whatever” (ésovdfwore without s). The
present Lemma amounts to saying that, if xy +x+y=a, then x={a-y)/(y+1).

2 This determinate set of equations can of course be solved, with our notation, by
a simple substitution.

The equations Yit+y+z=a
sx+z+x=4
xy+x+y=t[
(y+1) +1)=a+1, nw=a+1,
are equivalent to (z+1) (x+1)=b6+1, or {E=b+1,
{(x+x)u+')=c+r, fr=c+1,
where f=x+1, g=y+1, $=z+1.
The solution is t=x+1= \/ (b'H)([-H)} etc.
atr

In order that the result may be rational, it is only necessary that (a+ 1) (6+1) (¢4 1)
should be a square ; it is not necessary that eack of the expressions a+1, b+1, c+1
should be a square, as Diophantus says.
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By the first equation, if we divide (8 +second) by
(second — 1), we have the first number.
9,

Assuming x + 1 for the second number, we have 1 T

for the first.
Similarly I+1x§ is the third number, and two conditions

are satisfied.

The third gives %f‘ — 1=24, and xr=12,

The numbers are 57, 7 92
1205 K12
285 204 460

or,with a common denominator, SE EaheEs

Lemma to the following problem.

To find two numbers indeterminately such that their product
has to their sum a given ratio.
' Let the given ratio be 3:1, the first number x, the
second 5.

Therefore 5+ =3(5+x), x =7%; and the numbers are
74 5.

But 74 arises from 15 divided by 2, while the 15 is the
second number multiplied by the given ratio, and
the 2 is the excess of the second number over the
ratio.

Putting therefore x (instead of 5) for the second number,
we have, for the first number, 3x divided by » - 3.

The numbers are therefore 32/(x — 3), 2.

36. To find three numbers such that the product of any two
bears to the sum of those two a given ratio.
Let product of first and second be 3 times their sum.
» o second and third be 4 times their sum.
o i third and first be 5 times their sum.
Let second number be x; the first is therefore 3x/(x — 3),
by the Lemma, and similarly the third is 4x/(x — 4).

3 4% 3% q4x
L x—3'x—4_5(x—3+x—4)’
or 1224% = 352% ~ 120x.

Therefore x =122,
360 120 480

and the numbers are 2=, === 27,
51’ 23’ 28
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37. To find three numbers such that the product of any two
has to the sum of the three a given ratio,

Let product of first and second = 3 times sum of the three,

" ,» ofsecond and third =4
. . of third and first =5 i ”

First seek three numbers such that the product of any two
has to an arbitrary number (say 5) the given ratio.

Then product of first and second = 15; and, if » be the
second, the first is 15/

The product of second and third =20; therefore third
= 20/z.

It follows that 20. 15/+2= 25.

And, if the ratio of 20. 15 to 25 were that of a square to a
square, the problem would be solved.

Now 15 =3.5, and 20 is 4. 5, the 3 and 4 being fixed by
the original hypothesis, but 5 being an arbitrary
number.

We must therefore find a number 2 (to replace 5) such
that 12?/5m = ratio of a square to a square.

Thus 122, 57 =60m* = a square = Qoo? say ; and m=15.

Let then the sum of the three numbers be 15.

Product of first and second is therefore 45,and first =45/x.

Similarly third = 60/x.

Therefore 45.60/2*= 75, and x=6.

Therefore the numbers are 73, 6, 10, and the sum of
these =23%.

Now, if this sum were 15 instead, the problem would be
solved,.

» ”»

1 Loria (9p. cit. p. 130) quotes this problem as an instance of Diophantus’ ingenious
choice of unknowns. Here the equations are, with our notation,
yz=alx+y+z),
sx=b(x+y+2),
ay=c(x+y+2),
and Diophantus chooses as his principal unknown the sum of the three numbers,
x+y+z=w, say.
ac
We may then write x=cwy, s=awly, so that zx=acw?[y?=bw, and 3*= 7

ac
3 £%, we have

Putting 2 =
x+y+z=£;f?, y= %[ § s=af, x=ct,
from which, by eliminating x, », 2, we obtain §=(éc +ca +ab)/ac.
Hence x=(bc +catab)la, y=(bctcatab)lb, z=(bc+catab)lc.

13—2
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Put therefore for the sum of the three numbers 152% and
for the numbers themselves 74z, 6z, 102
Therefore 234 = 1527 so that =4I,

and QSLQ, iz’ 470 i5 a solution.
30’ 30’ 30
38. To find three numbers such that their sum multiplied
into the first gives a triangular number, their sum multiplied into
the second a square, and their sum multiplied into the third a cube.

Let the sum be 2% and let the numbers be m/+*, n/2? p/+2,
where 2, 7, p are a triangular number, a square and
a cube respectively ;

say first number = 6/2% second 4/2%, third 8/2%.

But the sum is 2?; therefore 18/+* =% or 18 =2%

Therefore we must replace 18 by some fourth power.

But 18 = sum of a triangular number, a square and a cube.

Let #* be the required fourth power, which must therefore be
the sum of a triangular number, a square and a cube.

Let the square be x4 — 222+ 1;

therefore the triangular number + the cube = 2x% — 1.

Let the cube be 8; therefore the triangular number is

L 227 —0.

But 8 times a triangular number + 1 = a square ; therefore
164° — 71 = a square = (4x— 1), say; thus x=g, the
triangular number is 153, the square 6400 and the

_ cube 8.
Assume then as the numbers 153/2% 6400/% 8/%%
Therefore 6561/ = 2?, or 2*=6561, and x=09.
Thus (%3, 63%0, %) is a solution .
! The procedure may be shown more generally thus.
Let £, 7, ¢ be the required numbers; suppose
Ern+i=a

and 5:5(%:;9, "’:.ﬂ;:’ ;_—.g.

It follows that = “_(“:;'_‘) + B+

Suppose now that 8=ux®- 2% [Diophantus and Bachet assume z=1].

ala+1)
o

Then =202 gt — 93

Eight times the left hand side plus 1 gives a square (by the property of triangular
numbers) ; that is,
(2a+ 1)?= 1622~ 851 - 843+ 1 =2 square
g =(45x = 4)%, say,
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39. To find three numbers such that the difference of the
greatest and the middle has to the difference of the middle and the
least a given ratio, and also the sum of any two is a square.

Ratio 3:1. Since middle number +least = square, let the
square be 4.

Therefore middle > 2; let it be x + 2, so that least =2 — .

Therefore difference of greatest and middle = 6, whence
the greatest = 7x+ 2.

Therefore Eas are both squares. [Double-equati.

65k q 5 ouble-equation.)

Take the difference 2z, split it into factors, say }z, 4, and
proceed by the rule; therefore x=r112.

But I cannot take 112 from 2; therefore x must be found
to be < 2, so that 6x 4+ 4< 16.

Thus there are to be three squares 8x+4, 6x+4 and 4
(the 4 arising from 2.2), and the difference of the
greatest and middle is { of the difference of the
middle and least.

We have therefore tofind three squares having this property
and such that the least =4 and the middle < 16.

Let side of middle square be z+ 2; therefore excess of
middle over least = 22 + 42, whence excess of greatest
over middle = {2 + 1}2, and therefore the greatest

=143+ 535+ 4.

This must be a square; therefore, multiplying by 9, we have

122® + 482 + 36 =a square,

_ 88+ A1
F= 8kz

must be integral, and therefore a integral, so that i(.p;x —4-1) must be
8244 8y% - (£ +1)?
Y

whence

Butl S
2

integral ; that is, must be integral.

Bachet that it is ry, with Diophantus, to take £=1, observing that
trial will show that the problem can hardly be solved otherwise. On this Fermat remarks
that Bachet’s trial had not been carried far enough. We may, he says, put for 3 any
cube, for instance, with side of the form 372+ 1. Suppose, for example, we take 73
Then [z being 1] we have to make -

2% - 344 a triangle,

and therefore 16x2— 2751 a square, and we may take, if we please, 4x— 3 as the side of
this square [so that £ is in this case 3].

By varying the cubes we may use an unlimited variety of odd numbers, besides 3,
as values for £ which will satisfy the required condition.

Loria (¢p. cif. p. 138) points out that the problem could have been more simply
solved by substituting x fcr 2% and s for 22 in the above assumptions. The ultimate
expression to be made a square would then have been 163 — 852~ 8y°+ 1, and we could
have equated this to A%, thus finding .
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or 328+ 122 +Q = a square = (5 — 3)? say.

It follows that &= (6 + 12)/(#? — 3), which must be < 2.

Therefore 6 + 12 < 2m*— 6, or 212 >6m +18.

“When we solve such an equation?, we multiply half the
coefficient of x into itself—this gives g—then multiply
the coefficient of 42 into the units—2 .18 = 36—add
this last number to the g, making 45, and take the
side [square root] of 45, which is not less than 7;
add half the coefficient of x—making a number not
less than 10—and divide the result by the coefficient
of 2%; the result is not less than 5.”

[32+ 18.2=45, and 1445 +§ is not less than § + 7.]

We may therefore put 72 =3+, or 5, and we thus have

352+ 125 +9=(3 - 52

Therefore =3¢, and the side of the middle square is
43, the squadre itself being 1842,

Turning to the original problem, we put 6x + 4 =184 and

= 1385 which s less than 2.

The greatest of the required numbers = 7x + 2 = 1297

726 °
o st _ 2817
the middle=x+2 = =
and the least = 2 — » = 7.
726

The denominator not being a square, we can make it
a square by dividing out by 6; the result is
18341 460 14}
TP ST T
or again, to avoid the } in the numerators, we may
multiply numerators, and denominators, by 4; thus
5B 8 5B

X L
484 384 is a solution2

1 1 have quoted Diophantus’ exact words here, with the few added by Tannery,
‘““making a number not less than ro...coefficient of x2,” in order to show the precise
rule by which Diophantus solved a complete quadratic.

When he says 4/45 is not less than 7, Diophantus is not seeking exact limits. Since
45 is between 6 and 7 we cannot take a smaller integral value than 7 in order to
satisfy the conditions of the problem (cf. p. 65 above).

2 A note in the Juwentum Novum (Part 11, paragraph 26) remarks upon the prolix and
involved character of Diophantus’ solution and gives a shorter alternative. The problem

is to solve

E—n=m@m-) (£>9>¢, and m=3, say)
n+=u i

e,

E+p=w 4
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40. To find three numbers such that the difference of the
squares of the greatest and the middle numbers has to the differ-
ence of the middle and the least a given ratio, and also the sum of
each pair is a square.

Ratio 3: 1.
Let greatest + middle number = the square 162%; therefore
greatest>82%: let it be 82° + 2; hence middle=8z*-2.
And, since greatest + middle > greatest + least,
162 > (greatest + least) > 827;
let greatest + least =gz1?%, say; therefore least =2* — 2.
Now difference of squares of greatest and middle = 642%
and difference of middle and least =722
But 64 is not equal to 3.7 or 2I.
Now 64 comes from 32.2; therefore we must find a
number 7z (in place of 2) such that 32m = 21.
Therefore 2 = }.
Assume now greatest number = 8% + #}, middle = 822 — 3},
least =22 — 21.
[And difference of squares of greatest and middle
=212*=3.71%])
The only condition left is: middle + least = square; that is,
92° — 43 = a square = (3r — 6)?, say.
Therefore x=£3%, :

3069000 2633544 13868r1) . :
and (33:776 s q3t76 331776) is a solution.

Take an arbitrary square number, say 4, for the sum of », {; suppose 2 +.x=mn, 2—-x= &
so that 9— {=2x; therefore £ —n=3(n— {)}=6x, whence {=2+7x.
The last two conditions require that

:::} shall be squares.

Replace x by ; y’+§ . This will make 4+ 6x a square. It remains that

4+13—6J'+§j‘=a square

23 4 M
N RG]

6 1 2
and y=1-, so that x=6f+§y=-l-;l.
1362 402 82

The numbers are therefore S T S
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BOOK V

1. To find three numbers in geometrical progression such that
each of them mznus a given number gives a square.
Given number 12.
Find a sguare which exceeds 12 by a square. “This is
easy [IL 10]; 42} is such a number.”
Let the first number be 42}, the third 2?; therefore the
middle number = 6}2.

Therefore A 12} are both squares;
6}x — 12

their difference = 2* — 632 = x (¥ — 6}); half the difference
of the factors multiplied into itself =182; therefore,
putting 64xr— 12 =182, we have r=441,

and (42&, 2%2"’, If:%) is a solution.

2. To find three numbers in geometrical progression such that
each of them when added to a given number gives a square.
Given number 20.
Take a square which when added to 20 gives a square,
say 16.
Put for one of the extremes 16, and for the other 42 so
that the middle term = 4.

Therefore gt 20} are both squares.
4% + 20

Their difference is #2 — 44 =z (¥ — 4), and the usual method
gives 4x +20=4, whick is absurd, because the 4
ought to be some number greater than 20.

But the 4 =} (16), while the 16 is a square which when
added to 20 makes a square; therefore, to replace 16,
we must find some square greater than 4.20 and
such that when increased by 20 it makes a square.

Now 81 > 80; therefore, putting (» + 9)* for the required
square, we have

(m + 9)* + 20 = square = (72 — 11), say;
therefore m =%, and the square = (94)*= go}.
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Assume now for the numbers 9o}, 9}, 2%, and we have

2+ 20

9ir+20

The difference =2 (x —9}), and we put 9lx +20=3§L.
Therefore x = £J;, and

(QOi, ‘?—g, %) is a solution.

} both squares.

3. Given one number, to find three others such that any one of
them, or the product of any two of them, when added to the given
number, gives a square.

Given number 5.

“We have it in the Porisms that if, of two numbers, each,
as well as their product, when added to one and the
same given number, severally make squares, the
two numbers are obtained from the squares of con-
secutive numbers.”

Take then the squares (x+ 3), (¥+4), and, subtracting
the given number 5 from each, put for the first
number #*+6x+4, and for the second 2*4+8x+11,
and let the third? be twice their sum mznus 1, or

42+ 28x + 29.

1 On this Porism, see pp. 99, 100 anfc.

2 The Porism states that, if & be the given number, the numbers x2-a, (x+1)* -a
satisfy the conditjons.

In fact, their product +a-{x(z+ 1)}2-a(22®+2x+1)+d*+a

={x{x+1)}3-2ex (x+1)+a={x (x+1)-a}’

Diophantus here adds, without explanation, that, if X, ¥ denote the above two numbers,
we should assume for the third required number Z=2 (X + ¥) — 1. We want #4rzc numbers
such that any £wo satisfy the same conditions as X, ¥. Diophantus takes for the third

Z=12(X+ Y) -1 because, as is easily seen, with this assumption two out of the three
additional conditions are thereby satisfied.

For Z=2(X+Y)-1=2(23+2x+1)—4a-1
=(2x+ 1) - 4a3
therefore XZ+a=22(2ax+1)2-af{(2x+1)*+ 2%} +40%+a

=22 (2x+1) - a. 4x (25 + 1) + 422
={x(2ax+1) 203
while YE+a=(x+1)2(ax+1P-a{(zx+1)+4 (x+1)*} +4a" +a
=(x+1)2(2x+1)%-a (8% + 12X + 4) + 447
={(x+1)(2x+1)~-2a}%
The only condition remaining is then
Z+a=a square,
- (2x+ 1)? - 3a=a square = (2x - £)?, say,
and x is found.
Cf. pp. 100, 104 above.
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Therefore 42°+ 28x+ 34 =a square=(2x — 6)}, say.
Hence x =4, and (2:7661 727‘25, 22;26) is a solution?,
4. Given one number, to find three others such that any one
of them, or the product of any two, minus the given number gives
a square.
Given number 6.
Take two consecutive squares 2% x*+ 2x + 1.
Adding 6 to each, we assume for the first number 2% + 6,
and for the second 22+ 2x + 7.
For the third® we take twice the sum of the first and
second minus 1, or 44*+ 4x+ 25.
Therefore third minus 6 = 42* + 4x + 19=square =(2x—6)’,
say.
Therefore x = 1%,

4993 6729 22660\ - :
and (784 s ey 8g ) 182 solution.
[The same Porism is assumed as in the precedmg problem

but with a minus instead of a plus. Cf. p. 99 above.]

5. To find three squares such that the product of any two
added to the sum of those two, or to the remaining square, gives
a square.

“We have it in the Porisms” that, if the squares on any two
consecutive numbers be taken, and a third number
be also taken which exceeds twice the sum of the
squares by 2, we have three numbers such that the
product of any two added to those two or to the
remaining number gives a square?,

! Diophantus having solved the problem of finding three numbers £, 7, { satisfying
the six equations
t+a=r4, n$+a=u?,
n+a=s, Fta=22
t+a=2, t+a=u?,
Fermat observes that we can deduce the solution of the problem

To find four numbers suck that the product of any pair added to a gizen number
produces a square.

Taking three numbers, as found by Diophantus, satisfying the above six conditions,
we take x + 1 as the fourth number. We then have three conditions which remain to be
satisfied. These give a ¢ triple-equation ” to be solved by Fermat’s method.

2 Diophantus makes this assumption for the same reason as in the last problem, v. 3.
The second note on p. 20t covers this case if we substitute —a for e throughéut.

3 On this Porism, see pp. 100-1 ante.
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Assume as the first square 224 22+ 1, and as the second
2%+ 4x + 4, so that third number = 422 + 122 4 12.
Therefore 4° + 32 + 3=a square =(x — 3, say, and x = 3.

Therefore (29—5, %4, fgé) is a solution.

6. To find three numbers such that each minus 2 gives a
square, and the product of any two minus the sum of those two,
or minus the remaining number, gives a square.

Add 2 to each of three numbers found as in the Porism
quoted in the preceding problem.

Let the numbers so obtained be 2242, #*+2r+3,
42 +4x+6.

All the conditions are now satisfied’, except one, which
gives

42° 4+ 4r + 6 — 2= a square.
Divide by 4, and 22+ x + 1 = a square = (x — 2)? say.
Therefore x =2,

and (2—:, %‘, 2:%56) is a solution.

Lemma I 1o the following problem.

To find two numbers such that their product added to the
squares of both gives a square.
Suppose first number z, second any number (s2), say 1.
Therefore #. 1 +2%+ 1 =2+ + I =asquare =(x — 2)} say.
Thus x=2, and

(g, 1) is a solution, or (3, 5).

Lemma 11 to the following problem.
To find three right-angled triangles (ie. three right-angled
triangles in rational numbers?) which have equal areas.
We must first find two numbers such that their product
+ the sum of their squares = a square, £g. 3, 5, as in
the preceding problem.

I The numbers are 22+ 2, (¥ +1)2+2, 2 {22+ (x+1)2+ 1} +2; and if X, V) Z dencte
these numbers respectively, it is easily verified that
XY—(X+Y)=(x2+x+1)2 XY-Z=(2+xp,
XZ —(X+2) =(222+x+2);, XZ-Y=(a+x+3P
and VZ - (V+2) =(22243x+3), ¥Z-X =(2224+3x+4)%
2 All Diophantus’ right-angled triangles must be understood to be right-angled
triangles with sides expressible in rational numbers. In future I shall say ‘right-angled
triangle ” simply, for brevity. :
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Now form right-angled triangles from the pairs of
numbers?!

(7,3), (7,5) (7,3+5)
[Ze. the right-angled triangles (724 3% 72— 3% 2.7.3), etc.].
The triangles are (40, 42, 58), (24, 70, 74), (15, 112, 113),
the area of each being 840.

1 Diophantus here tacitly assumes that, if @b+ a2+ 82=¢%, and right-angled triangles
be formed from (¢, @), (¢, &) and (¢, a+8) respectively, their areas are equal. The
areas are of course (c2-a?)ca, (2~ 82)ch and {(a+8)2— 2} (@+8)¢, and it is easy to
see that each =abc (2+8).

Nesselmann snggests that Diophantus discovered the property as follows, Let the
triangles formed from (#, 7}, (¢, ), (#, m) have their areas equal ; therefore

n(m2—n2)=g (m2—g®) =7 (2 - m?).

It follows, first, since mn—n3=miq - g3,
that mi=(n3~g%)|(n - g)=n*+ng+q°
Again, given (g, m, »), to find 7.,
We have g (m2-g?)=r(*—m?,
and m32 - g*=#2+ ng, from above ;
therefore g(n?+ng)=r (12— n®—ng—q?,
or g (2 +nr)+ g (n+r)=r(r*-n?).
Dividing by »+#, we have gn+gi=rt—yn;
therefore (g+7r)n=r"-¢%
and r=g+n.

Fermat observes that, given any rational right-angled triangle, say z, 4, ¢, where 2
is the hypotenuse, it is possible to find an infinite number of other rational right-angled
triangles having the same area. Form a right-angled triangle from 2% 26d; this gives
the triangle 4+ 48242, 22— 46%d% 42%6d. Divide each of these sides by 2z (6*-d%),

5 being >d'; and we have a triangle with the same area %bd as the original triangle.

Trying this method with Diophantus’ first triangle (40, 42, 58), we obtain as the new
triangle 1412881 1412880 1681

1189 ’ 1189 ’ 1189"
The method gives (%) 5 %’ 3 1;—:‘- as a right-angled triangle with area equal

to that of (3, 4, 5).

Another method of finding other rational right-angled triangles having the same area as
a given right-angled triangle is explained in the /nventum Novum, Part 1, paragraph 38
(FEuwvres de Fermat, 11. p. 348).

Let the given triangle be 3, 4, 5, so that it is required to find a new rational right-
angled triangle with area 6.

Let 3, x+ 4 be the perpendicular sides ; therefore

the square of the hypotenuse =x2+8x+ 25=a square.

Again, the area is %x+6 5 and, as this is to be 6, it must be six times a certain square ;

that is, %x+6 divided by 6 must be a square, and this again multiplied by 36 must
be a square; therefore
9x + 36 =a square.
Accordingly we have to solve the double-equation
224+ 8x+25=2u>
9x+36= v’} :
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7. To find three numbers such that the square of any one +
the sum of the three gives a square.
Since, in a right-angled triangle,
(hypotenuse)* + twice product of perps. = a square,
we make the three required numbers hypotenuses and the
sum of the three four times the area.
Therefore we must find three right-angled triangles having
the same area, ¢¢., as in the preceding problem,
(40, 42, 58), (24, 70, 74), (15, 112, 113).
Reverting to the substantive problem, we put for the
numbers 587, 74%, 113x; their sum 2452 = four times
the area of any one of the triangles = 336012
Therefore x =,

and (4%, 518 79t is a solution.

96’ 96° 96
Lemma to the following problem.
Given three squares, it is possible to find three numbers such
that the products of the three pairs shall be respectively equal to
those squares.

s 6725600
Th 7 =
is gives x ot
h SaPuibty
whence x+4 o751

The triangle is thus found to be

2896804 7776485
2405601° 2405601 "

”

TA410L L oot ol whichiis) oo
2405601 1551

The area is 6 times a certain square, namely

851
155¢0
4653 3404 7776485
851’ 1s31° 1319901°

49

: . 1393 £
Another solution of the double-equation, x= —-:PW"’?. giving x+4=4;, leads to

Dividing each of the above sides by , we obtain a triangle with area 6, namely

s 7 120 1201

the same triangle (;5, =0 =
The method of the Zrventum Novum has a feature in common with the procedure in
the ancient Greek problem reproduced and commented on by Heiberg and Zeuthen
(Bibliotheca Mathematica, Villz, 1907[8, p. 122), where it is required to find a rational
right-angled triangle, having given the area, 5 feet, and where the 3 is multiplied by 2
square number containing 6 as a factor and sach that the product ““can form the area of
a right-angled triangle.” 36 is taken and the area becomes 180, which is the area of
(9, 40, 41)- The sides of the latter triangle are then divided by 6, and we have the

required triangle (cf. p. 119, ante).

) as tbat obtained by Fermat’s rule (see above).
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Squares 4, 9, 16.

First number z, so that the others are 4/, 9/x; and 36/2*=16.

Therefore x=§, and the numbers are (1%, 2%, 6).

We observe that »=¢§, where 6 is the product of 2 and 3,
and 4 is the side of 16.

Hence the following 7#/e. Take the product of two sides
(2, 3), divide by the side of the third square 4 [the
result is the first number]; divide 4, 9 respectively
by the result, and we have the second and third
numbers.

8. To find three numbers such that the product of any two +
the sum of the three gives a square.

As in Lemma II to the 7th problem, we find three right-
angled triangles with equal areas; the squares of
their hypotenuses are 3364, 5476, 12769.

Now find, as in the last Lemma, three numbers such that
the products of the three pairs are equal to these
squares respectively, which we take because each
+ 4.(area) or 3360 gives a square ; the three numbers
then are

42025 3217y [3801322 Tannery],

4181y [618788» Tannery].

It remains that the sum of the three = 336022
Therefore 22§24898 » [181299224, Tannery] = 336022
Therefore » = AR [V or s Tannery],

781543 781543 781543
255380’ 109520° 67280 1"

[and the numbers are

9. To divide unity into two parts such that, if the same given
number be added to either part, the result will be a square,

Necessary condition. The given number must not be odd and
the double of it + 1 must not be divisible by any prime number
which, when increased by 1, is divisible by 4 [7.e. any prime number
of the form 47— 1]

Given number 6. Therefore 13 must be divided into two
squares each of which >6. If then we divide 13 into
two squares the difference of which < 1, we solve the
problem. .

1 For a discussion of the text of this condition see pp. 107-8, ante.
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Take half of 13 or 64, and we have to add to 6} a small
fraction which will make it a square,

I

2
z.e. 262 + 1 = a square = (5% + 1) say, whence x= 10.

That is, in order to make 26 a square, we must add {5, or,
to make 6% a square, we must add 4}, and

by + 64 = (8

Therefore we must divide 13 into two squares such that thetr
sides may be as nearly as possible equal to 3%. [This
is the mapiadryTos dywyj described above, pp. 95-8.]

Now 13=22+3% Therefore we seek two numbers such
that 3 minus the first = §}, so that the first = %, and
2 plus the second = 3, so that the second = 1}.

We write accordingly (112 + 2)? (3 —9x)* for the required
squares [substituting x for J;].

The sum =2024?— 10+ 13 =13.

Therefore x= 1§, and the sides are $5%, 335.

Subtracting 6 from the squares of each, we have, as the
parts of unity,

or, multiplying by 4, we have to make — + 26 a square,

4843 5388

10201° 10201°

10. To divide unity into two parts such that, if we add different
given numbers to each, the results will be squares.
Let the numbers* be 2, 6 and let them and the unit be
represerited in the figure, where DA =2, AB=1,
BE =6, and G is a point in 4B so chosen that DG,
GE are both squares.
D A GB E

Now DE=9. Therefore we have to divide 9 into two
squares such that one of them lies between 2 and 3.

Let the latter square be 2%, so that the other is 9—2%
where 3>22> 2, °

Take two squares, one >2, the other <3 [the former
being the smaller], say $5%, $%4.

1 Loria (0p. cit. p. 150.), as well as Nesselmann, observes that Diophantus omits to
state the necessary condition, namely that the sum of the two given numbers p/us 1 must
be the sum of two squares.
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Therefore, if we can make 2? lie between these, we shall
solve the problem.

We must have x> 1% and < 1}

Hence, in making 9—x” a square, we must find

xz>41fand < 13
Put 9 — 2% = (3 — mx), say, whence x=6m[(m*+ 1).
Therefore 17 < SHiE si 4o

12 w112
The first inequality gives 72m2 > 1772+ 17 ; and
36°—17.17 = 1007,

the square root of which! is not greater than 31;
31+36, z'.e.m:|>6—7.

17 17
Similarly from the inequality 19m*+ 19> 72 we find®

m< 5.

Let m=34. Therefore 9 — 2*=(3 — 33%)} and x=§4.
Therefore x*={35¢,

therefore 7z

and the segments of 1 are 1438 1371)

2809’ 2809
11. To divide unity into three parts such that, if we add the
same number to each of the parts, the results are all squares.

Necessary condition®. The given number must not be 2 or any
multiple of 8 increased by 2.
Given number 3. Thus 10 is to be divided into three
squares such that each > 3.

Take } of 10, or 3}, and find # so that §;7+ 3% may be a

square, or 302?41 =a square = (5x + 1)’ say.
Therefore x=2, 2*=4, 1/2*=1}, and
5 + 33 =12 = a square.

Therefore we have to divide 10 into three squares each of
which is as near as possible to 42l [wapicérnTos
dyayri.]

Now 10= 32+ 1° = the sum of the three squares 9, 1§, .

Comparing the sides 3, ¢, 3 with 11,
or (multiplying by 30) 9o, 24, 18 with- 55, we must
make each side approach 55.

1 Ie. the integral part of the root is +31. The limits taken in each case are @ fortiori
limits as explained above, pp. 61-3.

2 See p. 61, ante.

3 See pp. 108-9, ante.
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[Since then $3=3—-35=4+31=3+ 33} we put for the
sides of the required numbers
3—-35% 31x+4, 377 +4.
The sum of the squares = 35554* — 1162 + 10 = 10,
Therefore x= 18,
and this solves the problem.

12. To divide unity into three parts such that, if three different
given numbers be added to the parts respectively, the results are
all squares.

Given numbers 2, 3, 4. Then I have to divide 10 into
three squares such that the first > 2, the second > 3,
and the third > 4.

Let us add § of unity to each, and we have to find three
squares such that their sum is 10, while the first lies
between 2, 2}, the second between 3, 3}, and the
third between 4, 4}.

It is necessary, first, to divide 10 (the sum of two
squares) into two squares one of which lies between
2, 2}; then, if we subtract 2 from the latter square,
we have one of the required parts of unity.

Next divide the other square into two squares, one of
which lies between 3, 31;

subtracting 3 from the latter square, we have the second
of the required parts of unity.

Similarly we can find the third part?,

! Diophantus only thus briefly indicates the course of the solution. Wertheim solves
the problem in detail after Diophantus’ manner ; and, as this is by no means too easy,
I think it well to reproduce his solution.

I. Tt is first necessary to divide 10 into two squares one of which lies between 2

and 3. We use the wapwsbryros dywyh. )
The first square must be in the neighbourhood of 2} ; and we seek a small fraction

T
“L, which-when added to 2} gives a square: in other words, we must make 4 (1§+ ;,)

2
a square, This expression may be written 10+ (;) , and, to make this a square, we put
10y*+1=(37 +1)% say,

6 AR o
whence y =6, y*=36, 22=144, so that 2} + 1—'—_,: %i: (g) , which is an approximation

to the first of the two squares the sum of which is 10.

I |
The second of these squares approximates to 7}, and we seek a small fraction b=t such
g 2\2 \? 2
that 7§+x—3 is a square, or 3o+<;) =30+ (;) , say =a square.

H. D. - 14
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13. To divide a given number into three parts such that the
sum of any two of the parts gives a square.
Given number 10.

Put 30_;/’+x=(5}'+|)2 say;
therefore y =12, =4, a2=16, so that 7} + x2 nﬁl ({f)! = (?—i’)z

Now, since 10=12+ 3% and l—2=1+-l-7;, while 33—3——3—
we put (1+72)2+(3 - 3x)*=10, [Cf. v. 9]
so that x—zig

e 14 43\"_ 1849
BE% (' +29> <=9> =y

6 \2 81\? _ 6561
2= — =} ={—) ===,
-sr=(a-3) - () =%

1849

Therefore the two squares into which 10 is divided are O 6561

, and the first of
841’

and ——
these lies in fact between 2 and 23,

II. We have next to divide the square %T—!I into two squares, one of which, which
we will call 4% lies between 3 and 4. [The method of v. 10 is here applicable.}

Instead of 3, 4 take 49 6—6 as the limits.

16’
Therefore 49 <x‘< N
16
or Z <X < §.
4 4
2
And —— 656 — % must be a square = (%—kx) , say,
e & 1624
which gives =0+’
% has now to be chosen such that
(1) _ 162k g
29(1+4) " 4’
from which it follows that k<28...,
1624 8
S 90+8) <y
whence k>23....
‘We may therefore put k=125,
Therefore x=@, A= 2624409 3
841 707281
6561, 2893401
cal 841 o 707281 °

The three required squares into which 10 is divided are therefore
L3 DR2024400la 80 40T
841’ 707281 707281 °
And if we subtract 2 from the first, 3 from the second and 4 from the third, we obtain

as the required parts of unity
140447 502557 64277
707281" 707281" 707281°
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Since the sum of each pair of parts is a square less than
10, while the sum of the three pairs is twice the
sum of the three parts or 20,

we have to divide 20 into three squares eack of which
is < 10.

But 20 is the sum of two squares, 16 and 4;

and, if we put 4 for one of the required squares, we
have to divide 16 into two squares, each of which is
< 10, or, in other words, into two squares, one of which
lies between 6 and 10. This we learnt how to do!
[v. 10].

We have, when this is done, three squares such that
each is < 10, while their sum is 20;

and by subtracting each of these squares from 10 we
obtain the parts of 10 required.

14. To divide a given number into four parts such that the
sum of any three gives a square.
Given number 10.
Three times the sum of the parts = the sum of four squares.
Therefore 30 has to be divided into four squares, each of
which is < 10.

(1) If we use the method of approximation (wapiadrys),
] we have to make each square approximate to 7} ;

! Wertheim gives a solution in full, thus.
Let the squares be 42, 16 - 2%, of which one, 22, lies between 6 and 10.

Put instead of 6 and 10 the limits 175 and g, so that

5

S<a<3.
To make 16 - 2? a square, we put
16— x2=(4 - kx)?,

. _ 8
whence I—-——‘+k2-

g 8%
Now (1) m,> , and (2) +P<3

These conditions give, as limits for £, 2°84... and 2°21... .
We may therefore e.g. put £=23.

80 6400 056
Then x.-g, 13__817 16-x2=12 Bise
6400 7056
The required three squares making up 20 are 4, 8;41" 78451
Subtracting these respectively from 10, we have the required parts of the given number
ly 6, 201° 1354
10, namely T s

14—2
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then, when the squares are found, we subtract each
from 10, and so find the required parts.

(2) Or,observing that 30 =16+9 + 4 + I, we take 4,9 for
two of the squares, and then divide 17 into two squares,
each of which < 10.

If then we divide 17 into two squares, one of which lies
between 8} and 10, as we have learnt how to do?
[cf. V. 10], the squares will satisfy the conditions.

We shall then have divided 30 into four squares, each of
which is less than 10, two of them being 4, 9 and the
other two the parts of 17 just found.

Subtracting each of the four squares from 10, we have the
required parts of 10, two of which are 1 and 6.

15. To find three numbers such that the cube of their sum
added to any one of them gives a cube.
Let the sum be x and the cubes 743, 264°, 634°
Therefore 9623 =x, or g6a% = 1.
But 96 is not a square; we must therefore replace it by a
square in order to solve the problem.

1 Wertheim gives a solution of this part of the problem.

2
As usual, we make 8§+Il, , or 34 + (i) , a square,
Putting 2 =2, we must make 34+ lz:11 are,
g X7 ust make 34 5 square.

Let 34p%+1=a square=(6y — 1)?,
and we obtain =6, y*=36, 13=144.
& 2
Thus sh = 1208 (3]
144 144 \I2
and %‘5« is an approximation to the side of each of the required squares.
N i =1 [BoE 23 APRTY)
ext, since 17 =12+ 42, and T g o
we put 17=(r+23%)*+(4 - 13%)?,
and we obtain r=22,
349
The squares are then (14232)= (Lm pEic82850
349 121801 ’
3 fl 8361
a S 2=(1019 _ 1038361
o (4-13%) 349 121801

Subtracting each of these from 10, we have the third and fourth of the required parts
of 10, namely
185754 179649
121801 121801°
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Now 96 is the sum of three numbers, each of which is 1 less
than a cube;

therefore we have to find three numbers such that each
?f them is a cube less 1, and the sum of the three
is a square.

Let the sides of the cubes? be 2 + 1, 2—m, 2, whence the
numbers are #*+ 3m 4 3m, 7 — 12m + 67 — o e
their sum = g*— 9m + 14 = a square =(3m—4), say ;

therefore m =&,

and the numbers are 3388, 85, 7.

Reverting to the original problem, we put # for the sum of
the numbers, and for the numbers respectively

19525 A0, 72
whence 4374048 =

that is (if we divide out by 15 and by %),

2016+ = 225, and x=13.

The numbers are therefore found.

16. To find three numbers such that the cube of their sum
minus any one of them gives a cube.

Let the sum be , and the numbers {45, §§4% $34°.

Therefore 4§314° =1,

and, if 4321 were the ratio of a square to a square, the
problem would be solved.

But 4§77 = 3 — (the sum of three cubes).

Therefore we must find three cubes, each of which < 1,
and such that (3 — their sum) = a square.

If, @ fortiori, the sum of the three cubes is made < 1, the
square will be >2. Let? it be 2}.

1 If a3, 83, 3 are the three cubes, so that a3+ &3+ 3~ 3 has to be a square, Diophantus
chooses ¢3 arbitrarily (8) and then makes such assumptions for the sides of a3, 83, being
linear expressions in 7, that, in the expression to be turned into a square, the coefficient
of m3 vanishes, and that of m? is a square. If a=m, the condition is satished by
putting 4=34%—m, where £ is any number.

2 Bachet, finding no way of hitting upon 2} as the particular square to be taken
in order that the difference between it and 3 may be separable into three cubes, and
observing that he could not solve the problem if he took another arbitrary square between
2 and 3, eg. 2}, instead of 2}, concluded that Diophantus must have hit upon 24,
which does enable the problem to be solved, by accident.

Fermat would not admit this and considered that the method used by Diophantus for
finding 2} as the square to be taken should not be difficult to discover. Fermat accord-
ingly suggested a method as follows.

Let x— 1 be the side of the required square lying between 2 and 3. Then 3~ (x-1)?
=2+ 2x~4?% and this has to be separated into three cubes. Fermat assumes for the sides
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We have therefore to find three cubes the sum of which
=4 or §§%;

that is, we have to divide 162 into three cubes.

But 162 =125+464 — 27;

and “we have it in the Porisms” that ke difference of
two cubes can be transformed into the sum of two
cubes™,

Having thus found the three cubes? we start again, and
xr=2}2% so that r=2.

The three numbers are thus determined.

of two of the required cubes two linear expressions in x such that, when the sum of their
cubes is subtracted from z + 2x — 42, the result only contains terms in 22 and 43 or in x
and units.

The first alternative is secured if the sides of the first and second cubes are 1 — 13 xand
1+ x'respectively ; for ! ’
2+2x—2%— (x - éx) —(1+a)3= -—4§x’—-:—7x’.
This latter expression has to be made a cube, for which purpose we put

26 mix®
R T o

which gives a value for x. We have only to see that this value makes %x less than 1,

s S&Y,

and we can easily choose 7 so as to fulfil this condition.
[£.g- suppose =35, and we find x= :3, so that

1 13 1 20 72
—x=—2, 1-~x=—, 1+x=%1,
3 33 3 33 33

and the side of the third cube is —% 0

2 = 2

The square (x — [)7=(i) ,and in fact 3 - {(E)3+ (E)a - (6—")3} = (l) .

I 33 33 33 u

We then have three cubes which make up the excess of 3 over a certain square; but,
while the first of these cubes is <1, the second is > and the third is negative. Hence
we must, like Diopbantus, proceed to transform the difference between the two latter
cubes into the sum of two other cubes.

It will, however, be seen by trial that even Fermat’s method is not quite general, for
it will not, as a matter of fact, give the particular solution obtained by Diophantus in
which the square is 2}.

1 On the transformation of the difference of two cubes.into the sum of two cubes, see
pp. 101-3, ante.

3 3
2 Vieta’s rule gives 4° — 33= (%) + (gi:) . It follows that

SICISR Wl (OTN ¥ (a0 NS
4—216_(6) +(181) a7 273/’
and, since 23 = %, the required numbers are

o1 8

8 4998267 8 20338417 8
216" 27" 6028568 27’ 20346417 27"
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17. To find three numbers such that each of them minus the
cube of their sum gives a cube.

Let the sum be x and the numbers 2+°, 92°, 282°,

Therefore 392°=1;

and we must replace 39 by a square which is the sum
of three cubes + 3;

therefore we must find three cubes such that their sum
+ 3 is a square.

Let their sides’ be 2, 3 —m, and any number, say I.

Therefore gm* + 31 — 27m =a square = (3m — 7), say, so
that 72 = ¢, and the sides of the cubes are §, 3, 1.

Starting again, we put x for the sum, and for the numbers

#2830 30,
whence 14452° =125, 2*=25 and r=F,.
The required numbers are thus found.

18. To find three numbers such that their sum is a square and
the cube of their sum added to any one of them gives a square.

Let the sum be 2* and the numbers 3%, 82¢, 152°

It follows that 26x2*=1; and, if 26 were a fourth power, the
problem would be solved.

To replace it by a fourth power, we have to find three
numbers such that each increased by I gives a square,
while the sum of the three gives a fourth power.

Let these numbers be 7t — 2222, m* + 2m, m*— 2 [the sum
being #2]; these are indeterminate numbers satisfying
the conditions.

Putting any number, say 3, for m, we have as the required
auxiliary numbers 63, 185, 3.

Starting again, we put * for the sum and 32, 152¢, 632* for
the required numbers,

and we have 8125=217 so that x=14.

3 I E)
The numbers are thus found (729. 50} 735

19. To find three numbers such that their sum is a square and
the cube of their sum minus any one of them gives a square.
[There is obviously a lacuna in the text after this enunciation ;
for the next words are “ And we have again to divide 2 as before,”
1 Cf. note on V. 15. In this case, if one of the cubes is chosen arbitrarily ax’d m
is another, we have only to put (3£ — ) for the side of the third cube in o.rder that, in the
expression to be made a square, the term in #* may vanish, and the term in m® may be a
square.
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whereas there is nothing in our text to which they can refer, and
the lines which follow are clearly no part of the solution of V. 19.

Bachet first noticed the probability that three problems inter-
vened between V. 19 and V. 20, and he gave solutions of them.
But he seems to have failed to observe that the eight lines or so in
the text between the enunciation of v. 19 and the enunciation of
V. 20 belonged to the solution of the last of the three missing
problems. The first of the missing problems is connected with
v. 18 and 19, making a natural trio with them, while the second and
third similarly make with v. 20 a set of three. The enunciations
were doubtless somewhat as follows.

19a. To find three numbers such that their sum is a square
and any one of them minus the cube of their sum gives a square,

194. To find three numbers such that their sum is a given
number and the cube of their sum p/us any one of them gives a
square.

19¢. To find three numbers such that their sum is a given
number and the cube of their sum ménus any one of them gives a
square,

The words then in the text after the enunciation of V. 19
evidently belong to this last problem.]

The given sum is 2, the cube of which is 8.

We have to subtract each of the numbers from 8 and
thereby make a square.

Therefore we have to divide 22 into three squares, each
of which is greater than 6;

after which, by subtracting each of the squares from 8, we
find the required numbers. B

But we have already shown [cf. V. 11] how to divide 22
into three squares, each of which is greater than 6—
and less than 8, Diophantus should have added.

[The -above is explained by the fact that, by addition,
three times the cube of the sum minus the sum itself
is the sum of three squares, and three times the
cube of the sum minus the sum = 3.8 —2=22]1

1 Wertheim adds a solution in Diophantus’ manner. We have to find what small

fraction of the form é we have to add to 131 or %g, and therefore to 66, in order to

make a square. In order that 66 +xl2 may be a square, we put

6622+ 1 =square=(1 + 8x)?, say,
which gives x=8 and a%?=04.
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20. To divide a given fraction into three parts such that any
one of them minus the cube of their sum gives a square.
Given fraction .
Therefore each part = ¢ + a square.
Therefore the sum of the three =} = the sum of three

squares + .
Hence we have to divide {3 into three squares, “ which is
easy.”

21. To find three squares such that their continued product
added to any one of them gives a square.

Let the “solid content” =22,

We want now three squares, each of which increased by 1
gives a square.

They can be got from right-angled triangles? by dividing
the square of one of the sides about the right angle
by the square of the other.

Let the squares then be

510 Eht, St

The continued product = J4400-26 = 22, by hypothesis.

Therefore 133+ =1 ; and, if $3% were a square, the problem
would be solved.

We have therefore to increase 66 by é , and therefore 7% by 5L76 , in order to make a

Andiin fact 73+ -2 = (55Y’
square. And in fac 7§+576— (’24) .
Next, since 22 =3+ 32+ 2%, and 65 - 48=17, while 72-65=7, we put
212=(3- 72 +(3- 75 + (2 + 172
X = I6-.
387
1049 1049 1046
387 387 387’
1100401 1100401 1094116
149769 ° 149769 ' 149769 '
and the required parts of 2 are 1_9479_77‘.’6% , 19479773619 5 —::;;gg 5
1 As Wertheim observes, L ol ) , and the required fractions into which
64 64 25 400
250TR50 im0 18
1600’ 1600° 1600°
2 If @, & be the perpendiculars, ¢ the hypotenuse in a right-angled triangle,

and

Therefore the sides of the squares are

the squares themselves

L is divided are
4

3
Cr it i

phl=p
Diophantus uses the triangles (3, 4, 5), (5, 12, 13), (8, 15, 17)-

=a square.
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As it is not, we must find three right-angled triangles such
that, if 4’s are their bases, and p’s are their perpen-
diculars, g, #, 5 b,8:0, = a square;

and, if we assume one triangle arbitrarily (3, 4, 5), we
have to make 12, 2,6,4, a square, or 35:4,/p.0, a square.

“This is easy!” and the three triangles are (3, 4, 5),

(9, 40, 41), (8, 15, 17) or similar to them.

! Diophantus does not give the work here, but only the result. Bachet obtains it
in this way. Suppose it required to find three rational right-angled triangles (%y, 2y, 6y),
(%2, £2, b2) and (43, p3, 83) such that pypops/bibebs is the ratio of a square to a square.
One triangle (%,, #,, &;) being chosen arbitrarily, form two others by putting

ke=hl+p?, pr=hl-pil=b?, by=2hp,
hs=hl+b?, ps=l’-bl=p? b3=2k10y,

htets_ (ﬂ

i bybobs 24y

If now k=35, pr=4, b1=3, the triangles (%, p3, b3) and (%3, 3, 83) are (41, 9, 40)

and (34, 16, 30) respectively. Dividing the sides of the latter throughout by 2 (which

does not alter the ratio), we have Diophantus’ second and third triangles (9, 40, 41) and

(8, 15, 17).

Fermat, in his note on the problem, gives the following general rule for finding two

right-angled triangles the areas of which are in the ratio 7 : 1 (m>n).

and we have

2
) =a square.

Form (1) the greater triangle from 2+ 2, m — n, and the lesser from 2+ 25, m —n,
or (2) the greater from 2m ~#n, m+mn, the lesser from 222 —m, m+n,
or (3) the greater from 6m, 2m —n, the lesser from 4m+n, 4m - 2n,
or (4) the greater from mz + 42, 2m— 47, the lesser from 622, m—2n.

The alternative (2) gives Diophantus’ solution if we put m=3, =1 and substitute
m—2n for 202 —m. )

Fermat continues as follows: We can deduce a method of finding #47ee right-angled
triangles the areas of which are in the ratio of three given numbers, provided that the
sum of two of these numbers is equal to four times the third. Suppose ¢.g. that m, r, ¢
are three numbers such that m+g=4#n (m>g). Now form the following triangles :

(1) from me+ 42, 2m - 4n,
(2) from 62, m—an,
(3) from 4n+g, 47-24.
[If 4y, A2, A3 be the areas, we have, as a matter of fact,
A\m=Ag[n=A3]g= - 613+ 36m2n + 144mn? — 384n3.]

We can derive, says Fermat, a method of finding three right-angled triangles the areas
of whick themsclves form a right-angled triangle. For we have only to find a triangle
such that the sum of the base and hypotenuse is four times the perpendicular. This is
easy, and the triangle will be similar to (17, 15, 8); the three triangles will then be formed

(1) from 174+4.8, 2.17-4.8 or 49, 2,
(2) from 6.8, 17-2.8 or 48,1,
(3) from 4.8+15, 4.8-2.15 or 47, 2.

[The areas of the three right-angled triangles are in fact 234906, 110544 and 207270,
and these numbers form the sides of a right-angled triangle.]

Hence also we can derive a method of finding three right-angled triangles the areas
of whick are in the ratio of three given squares suck that the sum of two of them is equal to
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Starting again, we put for the squares

o' T, 1§l
Equating the product of these to 2%, we find » to be
100
gL zs]
22. To find three squares such that their contmued product
minus any one of them gives a square.
Let the solid content be #? and let the numbers be
obtained from right-angled triangles, being

LIEN i S E :
Therefore the continued product (4'—'5'8—)):“:4",

rational [x=1¢, and the squares are =2,

5.13.17
2
- ( 4.5.8 )x‘= 25600 o
5.13.17 1221025
25600 4.5.8
If then 1221028 were a fourth power, z.e, if Sy were

a square, the problem would be solved.

We have therefore to find three right-angled triangles
with hypotenuses /%, /%, %, respectively, and with
21 Pa £5 as one of the perpendiculars in each re-
spectively, such that

Inledes pr p. P = @ square,

Assuming one of the triangles to be (3, 4, 5), so that eg.

i3 ps= 5.4 =20, we must have
5/ pi/is = a square.

This is satisfied if 2,0, = 5/, 2,.

With a view to this we have first (cf. the last proposition)
to find two right-angled triangles such that, if 4, 3,
are the two perpendiculars in one and x,, y, the two
perpendiculars in the other, 1,3, =51,5,. From such
a pair of triangles we can form two more right-
angled triangles such that the product of the
hypotenuse and one perpendicular in one is five times
the product of the Aypotenuse and one perpendicular in
the other.

Sfour times the third, and we can also in the same way find three right-angled triangles of
the same area; we can also construct, in an infinite number of ways, fwo right-angled
triangles the areas of whick are in a given ratio, by multiplying one of the terms of the
ratio or the two terms by given squares, etc.

1 Diophantus’ procedure is only obscurely indicated in the Greek text. It was
explained by Schuiz in his edition (cf. Tannery in Oeuvres de Fermat, 1. p. 323, note).
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Since the triangles found satisfying the relation x, »,= 5,7,
are (5, 12, 13) and (3, 4, 5) respectively!, we have in
fact to find two new right-angled triangles from them,
namely the triangles (4, #,,6,) and (/zz, s, 82), such that

/npy=30 and X, 0, =
the numbers 30 and 6 being the areas of the two
triangles mentioned.

These triangles are (64, §9, [4]) and (2§, 42, []) re-
spectively.

Starting again, we take for the numbers

112 B a9

[12 divided by 2; nges 3¢, and $9 divided by 64 gives 12§.]

The product =

therefore, taking the square root, we have

4.24.120
5.25.169
so that x=4%, and the required squares are found.

=1,

~ 23. To find three squares such that each minus the product of
the three gives a square.

Having given a rational right-angled triangle (3, x, y), Diophantus knows how to find a

rational right-angled triangle (%, 2, &) such that hp:lxy. We have in fact to put

% 1 54_4x2y1 22— y2\2
k= —z,;_ 2 whence 42 =2~ -P= T)_( e

Thus, having found two triangles (3, 12, 13) and (3) 4» 5) with areas in the ratio of 3
to 1 (see next paragraph of text with note thereon), Diophantus takes

}11—— 13= 6},;1_5—2 6—;; and similarly g = ; .5=2},;5z="%4 =—‘51.
Cossali (after Bachet) gives a formula for three right-angled triangles such that the
solid content of the three hypotenuses has to the solid content of three perpendiculars
(one in each triangle) the ratio of a square to a square ; his triangles are

() 4 b plimipotenusal,  (2) ¥EAE, AP2F Al

W2+ 412 b 4bp+p (47— 07) 1’-4615—&(02—&2)_2
(8) == i s =47,

i (52 B2+ 4ip? 2 2)2
and, in fact, ’_(5;41)2;;“} +47%) p.ap. b= ‘_(_b"'_“/’.)_ 422
If =35, b=4, p=3, we can get from this tnangle the triangles (13, 5, 12) and
(65, 63, 16), and our equation is i’ :; ngﬂ— 1.

1 These triangles can be obtained by putting m =35, z=1 in Fermat’s fourth formula
(note on last proposition). By that formula the triangles are formed from (9, 6) and
(6, 3) respectively ; and, dividing out by 3, we form the triangles from (3, 2) and (2, 1)
respectively.
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25. To find three squares such that the product of any two
minus 1 gives a square.
This reduces, similarly, to v. 22 above.

26. To find three squares such that, if we subtract the product
of any two of them from unity, the result is a square.
This again reduces to an earlier problem, v. 23.

27. Given a number, to find three squares such that the sum of
any two added to the given number makes a square.

Given number 15.

Let one of the required squares be 9 ;

I have then to find two other squares such that each
+ 24 = a square, and their sum + 15 = a square.

To find two squares, each of which + 24 = a square, take
two pairs of numbers which have 24 for their pro-
duct?.

Let one pair of factors be 4/, 6z, and let the side of one

square be half their difference or i — 3%

Let the other pair of factors be 3/x, 8%, and let the
side of the other square be half their difference or
1}
Wl

Therefore each of the squares + 24 gives a square.

It remains that their sum + 15 =a square;

therefore (I;’} - 436)il - (;— 3x)ﬁ+ 15 =a square,

Equating the square of half the sum of the factors to the larger expression, we have

2
(5rea =g

5 27
=53 151
whence y= o] and 32 +2y= G
16 1218311 2 3 3
Therefore’ x=— (32 +2y)= - ; which satisfies the equations. In fact
‘ 5 GRS = o s q

2 :\2 2
_9ax+1=(”467) ,ﬁx+1=(w) ,andz—56x+1=(47ﬁ).

16 11520/’ 4 3456 81 4860
But even here, as the value of x which we have found is negative, we ought, strictly
1218311

74639600 for x in the equations

and solving again, which would of course lead to very large numbers.

1 The text adds the words *“and [let us take] sides about the right angle in a right-
angled triangle.” I think these words must be a careless interpolation : they are not
wanted and give no sense; nor do they occur in the corresponding place in the next
problem.

speaking, to deduce a further value by substituting y —
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or S T25%'—9=asquare = 251%, say.

Therefore x= 3, and the problem is solved?,

28. Given a number, to find three squares such that the sum of
any two minus the given number makes a square,

Given number 13.

Let one of the squares be 25 ;

I have then to find two other squares such that each
+ 12 =a square, and (sum of both) — 13 =a square.

Divide 12 into factors in two ways, and let the factors be
(3%, 4/) and (45, 3/2).

Take as the sides of the squares half the differences of the
factors, ze. let the squares be

k 2
(). (1
5 x
Each of these + 12 gives a square. _
It remains that the sum of the squares — 13 =a square,

or i—%+6}xg—25=asquare=%, say.

Therefore x = 2, and the problem is solved?

! Diophantus has found values of £, #, { satisfying the equations
7+ {2+a=u?
2+ 2+a=22
2+ +a=ut
Fermat shows how to find four numbers (not squares) satisfying the corresponding
conditions, namely that the sum of any two added to ¢ shall give a square. Suppose a=15.
1529
100" 225 °
Assume x2— 13 as the first of the four required numbers; and let the second be 6x+9
(because g is one of the square numbers taken and 6 is twice its side); for the same
reason let the third number be = x F 155 and the fourth *— 46 P :—:—g
Three of the conditions are now fulﬁlled since each ofthe last three numbers added to
the first (a2 - 15) plus 15 gives a square. The three remaining conditions give the triple-
equation

Take three numbers satisfying the conditions of Diophantus’ problem, say g,

6lr+ 9+ —+1=_ 63 x+ (*9)

LEJPPONS . PIL P (7—7 =,
15 225 15 15
49 eI V520N 791+ ( ) =
15 100 T 225 3 15
2 Fermat observes that four numbers (not squares) with the property indicated can
be found by the same procedure as that shown in the note to the preceding problem.
If a is the given number, put x2+a for the first of the four required numbers.
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29. To find three squares such that the sum of their squares is
a square.

Let the squares be 2% 4, 9 respectively™.

Therefore 24 + 97 = a square = (#?— 10)?, say ;

whence x?= ;.

If the ratio of 3 to 20 were the ratio of a square to a
square, the problem would be solved ; but it is not.

Therefore 1 kave to find two squares (2% ¢°, say) and a
number (m, say) such that m*—p*—g* has to 2m the
ratio of a square to a square.

Let p2=2% ¢*=4 and m=2*+ 4.

Therefore w*—pt —g* = (2°+ 4 — 24 — 16 =822

Hence 8z*/(22* + 8), or 42%/(s* + 4), must be the ratio of a
square to a square.

Put 22+ 4=(2+ 1) say;

therefore z =14, and the squares are =2}, ¢*=4, while
m=06};

or, if we take 4 times each, p>=09, ¢°=16, m = 25.

Starting again, we put for the squares 22 9, 16;

then the sum of the squares=x*+ 337 =(2*—25)? and
r=12,

The required squares are %4, 9, I6.

30. [The enunciation of this problem is in the form of an
epigram, the meaning of which is as follows.]

A man buys a certain number of measures (ydes) of wine, some

at 8 drachmas, some at 5 drachmas each. He pays for them a

square number of drachmas; and if we add 6o to this number, the

result is a square, the side of which is equal to the whole number
of measures. Find how many he bought at each price.

Let x=the whole number of measures ; therefore 22 — 60

was the price paid, which is a square = (x — m), say.

If now #2, 2, m? represent three numbers satisfying the conditions of the present
problem of Diophantus, put for the second of the required numbers 241 + £2, for the third
2/x+1/% and for the fourth 27x+m2  These satisfy three conditions, since each of the
last three numbers added to the first (x%+a) less the number & gives a square. The
remaining three conditions give a triple-equation.

1 « Why,” says Fermat, ‘‘does not Diophantus seek fwo fourth powers such that
their sum is a square? This pmblem is in fact impossible, as by my method I am in
a position to prove with all rigour.” It is probable that Diophantus knew the fact
without being able 10 prove it generally. That neither the sum nor the difference of
two fourth powers can be a square was proved by Euler (Com arithmeticae, 1.

PP 245qq., and Algebra, Part 11, c. XIIL).
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BOOK VI

1. To find a (rational) right-angled triangle such that the
hypotenuse minus each of the sides gives a cube’.

Let the required triangle be formed from x, 3.

Therefore hypotenuse =% +9, perpendicular =6z, base
=x'—0.

Thus #* + 9 — (#*— 9) = 18 should be a cube, but it is not.

Now 18=2.3?; therefore we must replace 3 by , where
2.7 s a cube; and m = 2.

We form, therefore, a right-angled triangle from z, 2,
namely (#2+4, 4%, 2°—4); and one condition is
satisfied.

The other gives 2°— 4% + 4 =a cube ;

therefore (x — 2)? is a cube, or x — 2 is a cube = 8§, say.

Thus x = 10,

and the triangle is (40, g6, 104).

2. To find a right-angled triangle such that the hypotenuse
added to each side gives a cube.

Form a triangle, as before, from two numbers; and, as
‘before, one of them must be such that twice its
square is a cube, 7o must be. 2.

We form a triangle from x, 2, namely 2?44, 4%, 4 —2%;
therefore 2% + 4x + 4 must be a cube, while 22 must
be less than 4, or #< 2.

Thus x + 2 =a cube which must be <4 and >2 =27, say.

Therefore x =11,

he triangle is (235 377
and the triangle is (64 i o4)’
- or, if we multiply by the common denominator, (135,

352, 377)-

3. To find a right-angled triangle such that its area added to
a given number makes a square.
Let 5 be the given number, (3%, 4%, 5¥) the required
triangle,

! Diophantus’ expressions are 6 év 7§ morewoiay, *‘the (number) in (or represent-
ing) the hypotenuse,” 6 év éxarépg 7@v 8pfiov, *“the (rumber) in (or representing) each

of the perpendicular sides,” 6 ¢&v 7¢ éuBad, “‘the (szumber) in (or representing) the area,”
etc. It will be convenient to say ‘‘the hypotenuse,” etc. simply. It will be observed
that, as between the numbers representing sides and area, all idea of dimension is ignored.
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2 1 1
Its area is m* — —, and let the number be 2 —§.—.
m? m

Therefore 6 — :7;—:: 1 (a square),

or 36m®— 60 = a square = (6m — 2)}, say.

Therefore 7 =$§, and the auxiliary triangle is formed from
(8, §), the auxiliary number being $%.

We start again, substituting for 3, 4, 5 in the eriginal
hypothesis the sides of the auxiliary triangle just
found, and putting (31)+* in place of 42*; and the
solution is obvious.

[The auxiliary triangle is (4048, 2, 4177), whence

1992~ 6= (3P 2, and 7=,
so that the required triangle is (454, 42, 4450).]
5. To find a right-angled triangle such that, if its area be
subtracted from a given number, the remainder is a square.
Given number 10, triangle (3z, 41, 5%), say.
Thus 10— 62*=a square; and we have to find a right-.
" angled triangle and a number such that
(area of triangle) + (number)® = {; of a square.

3 . I . 1
Form a triangle from 7, ’;‘, the area being ® — 551

and let the number be ;I’;+ 5.

Therefore 26m2+ 10 = {4; bf a square,

or 260m° 4+ 100 =a square,
or again  65m® 4 25 = a square =(8m + 5)? say,
whence m = 80.

The rest is obvious.
The required triangle is 43359989 2. 40960001 ]
6. To find a right-angled triangle such that the area added
to one of the perpendiculars makes a given number.

: Given number 7, triangle (37, 47, 5%).

Therefore 622+ 32 =7.

In order that this miight be solved, it wonld be necessary that
(half coefficient of x) + product of cogfficient of x* and
absolute term should be a square ;

but (14)?+ 6.7 is not a square.

Hence we must find, to replace (3, 4, 5), a right-angled
triangle such that

(} one perpendicular)? + 7 times area = a square.

Let one perpendicular be s, the other 1.
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Therefore 34m +}=a square, or 14m + 1 =a square.
Also, since the triangle is rational, m? 4+ 1 =2 square.}
The difference 72 — 14m = m (m — 14);

and putting, as usual, 7? = 14m + 1,

we have m =24,

The auxiliary triangle is therefore (3, 1, %2) or (24, 7, 25).
Starting afresh, we take as the triangle (24« 7z, 2 5%).
Therefore 8422+ 72 =7,

and x=1.

We have then (6, %, 2?5) as the solution®,

7- To find a right-angled triangle such that its area minus one
of the perpendiculars is a given number.
Given number 7.
As before, we have to find a right-angled triangle such that
(4 one perpendicular)® + 7 times area=a square ;
this triangle is (7, 24, 25).
Let then the triangle of the problem be (7, 24.:r, 25%).
Therefore 8442 — yx =7,
r=1,
and the problem is solved®.

1 Fermat observes that this problem and the next can be solved by another method.
““Form in this case,” he says, “a triangle from the given number and 1, and divide
the sides by the sum of the given number and 1; the quotients will give the required
triangle.”

In fact, if we take as the sides of the required triangle

(a?+1) x, (a®-1)x, 2ax,
where a is the given number, we have
(a?~ 1) ax?+ 2ax=a,
hich i |l 1 a 1
one root of which is x—--;i—:-i-(ﬁ_—l—ﬁ,
and the sides of the required triangle are therefore
a@+1 -1 2a
a+1' a1’ a+t’

The solution is really the same as that of Diophantus.

2 Similarly in this case we may, with Fermat, form the triangle from the given number
and 1, and divide the sides by the difference between the given number and 1, and we
shall have the required triangle.

In v1. 6, 7, Diophantus has found triangles ¢, £, 7 (¢ being the hypotenuse), such that

(1) Sen+i=e,
1

and (2) ;5”1“5=“~

Fermat enunciates the third case

() &-2tn=a,
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8. To find a right-angled triangle such that the area added to
the sum of the perpendiculars makes a given number.
Given number 6.
Again I have to find a right-angled triangle such that
(} sum of perpendiculars) + 6 times area = a square.
Let m, 1 be the perpendicular sides of this triangle ;
therefore } (m+ 1)*+ 3m=4m*+ 3}m + } = a square,
while #? + 1 must also be a square.
Therefore L2y I4mg+ :
mr+ 1
The difference is 272.7, and we put
mE—gm+ 12 =m* +1,
whence 2 = $3,
and the auxiliary triangle is (43, 1, §2), or (45, 28, 53).
Assume now for the triangle of the problem
(452, 28z, 53%).
Therefore 63022+ 73xr=06;
x is rational [= {5], and the solution follows.

} are both squares.

9. To find a right-angled triangle such that the area mznus the
sum of the perpendiculars is a given number.
Given number 6.
As before, we find a subsidiary right-angled triangle such
that(}sum of perpendiculars)*+6 times area=a square.
This is found to be (28, 45, 53) as before.
Taking (28, 454, 53%) for the required triangle,
6302 — 73r=06;
x =+, and the problem is solved®.
10. To find a right-angled triangle such that the sum of its
area, the hypotenuse, and one of the perpendlculars is a given
number.

observing that Diophantus and Bachet appear not to have known the solution, but that
it can be solved “‘by our method.” He does not actually give the solution ; but we may
compare his solutions of similar problems in the Znventum Novum, e.g. those given in
the notes to v1. 11 and VI. 15 below and in the Supplement. The essence of the method
is that, if the first value of x found in the ordinary course is such as to give a negative
value for one of the sides, we can derive from it a fresh value which will make all the
sides positive.
1 Here likewise, Diophantus having solved the problem

%En— (E+n)=a,
Fermat enunciates, as to be solved by his method, the corresponding problem

" ]
. f+n-—dn=a
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Given number 4.
If we assumed as the triangle (/%z, gz, bx), we should have
P00+ I+ br=4;
and, in order that the solution may be rational, we must
find a right-angled triangle such that
1 (hyp. + one perp.)*+ 4 times area = a square.
Form a right-angled triangle from 1, 7 + 1.
Then § (hyp. +pne perp.y =1 (#* + 2m + 2 + m* 4 2m)
=1t qm® + 6m + 4 + 1,
and 4 times area =4 (# + 1) (m* + 2m)
=4t + 1202 + 8.
Therefore
mt4-8m* + 18m+ 12m + 1 = a square = (6 + 1 — m2), say,
whence 7 = ¢, and the auxiliary triangle is formed from
(1, §) or (5, 9). This triangle is (56, 90, 106) or
(28, 45, 53).
We assume therefore 28z, 45+, 534 for the original triangle,
and we have 630¢'+ 81xr =4.
Therefore x = 45, and the problem is solved.

11. To find a right-angled triangle such that its area minus
the sum of the hypotenuse and one of the perpendiculars is a given
number.

Given number 4.
We have then to find an auxiliary triangle with the same
property as in the last problem ;
therefore (28, 45, 53) will serve the purpose.
We put for the triangle of the problem (28,45, 53%), and
we have 6301 — 81xr =4
x=1}, and the problem is solved?,

1 Diophantus has in VL. 10, 11 shown us how to find a rational right-angled triangle
& & 7 (¢ being the hypotenuse) such that
(1) ifrz+ {+E =a
() Sen-G+h=a

Fermat, in the /nuventum Novum, Part 111. paragraph 33 (Ocuvres ds Fermat, 111.
p- 389), propounds and solves the corresponding problem

() f+E-sn=a

In the particular case taken by Fermat a=4. He proceeds thus:
First find a rational right-angled triangle in which (since 2=4)

{% (i‘+$)}i-4-§$n=a square. L,
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Lemma I to the following problem.

To find a right-angled triangle such that the difference of the
perpendiculars is a square, the greater alone is a square, and further
the area added to the lesser perpendicular gives a square.

Let the triangle be formed from two numbers, the greater
perpendicular being twice their product.

Hence I must find two numbers such that (1) twice their
product is a square and (2) twice their product exceeds
the difference of their squares by a square.

This is true of any two numbers the greater of which
=twice the lesser.

Form then the triangle from x, 24, and two conditions are
satisfied. -

The third gives 62* + 32"=a square, or 62+ 3 = a square.

I have therefore to find a number such that 6 times its
square + 3 =a square ;.

one such number is 1, and there are an infinite number of
others?.

If x = 1, the triangle is formed from 1, 2.

Suppose it formed from x+ 1, x; the sides then are
$=2x%+2x+1, f=2x41, n=243+21.
2
Thus {i €+ E)} - 4. 2 =2t 43 4622+ 4o+ 1 - 4 (2% + 327+ 7)
=at— 423622 +1
=a square
=(x2-2x+1)?, say.
Therefore —6x2=642~ 4x, x:é, and x+1 =§.

The triangle formed from g, % is (19—7, 1—95 s g) . Thus we may take as the auxiliary
triangle (17, 15, 8). i

Take now 17x, 15%, 8a for the sides of the triangle originally required to be found.
We have then

{+E—§$rp=3nx—ﬁox2=4;
whence x=§, and the required triangle is (‘_32, {f, g)
[The auxiliary right-angled triangle was of course necessary to be found in order to
make the final quadratic give a rational result.]
Bachet adds after V1. 11 a solution of the problem represented by
I
2 n-¢=a,
to which Fermat adds the enunciation of the corresponding problem
1
§=5 =0

! Though there are an infinite number of values of x for which 642+ 3 becomes a square,
the resulting triangles are all similar. For, if . be any one of the values, the triangle is
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Lemma IT to the following problem.

Given two numbers the sum of which is a square, an infinite
number of squares can be found such that, when the square is multi-
plied by one of the given numbers and the product is added to
the other, the result is a square. :

Given numbers 3, 6.

Let 22+ 2r+1 be the required square which, say, when
multiplied by 3 and then increased by 6, gives a square.

We have 342+ 6r+ 9g=a square;

and, since the absolute term is a square, an infinite number
of solutions can be found.

Suppose, eg. 34+ 6x+9=(3 — 34),

and xr=4.

The side of the required square is 5, and an infinite
number of other solutions can be found.

12. To find a right-angled triangle such that the area added
to either of the perpendiculars gives a square.

Let the triangle be (5x, 127, 13%). .

Therefore (1) 304%+ 12x = a square = 3627, say,

and =2

But (2) we must also have

30x® 4+ 5r =a square.

This is however not a square when x = 2.

Therefore I must find a square 7%? to replace 3647 such
that 12/(#* — 30), the value of x obtained from the
first equation, is real and satisfies the condition

304% 4+ 5x = a square.

This gives, by substitution,

(60m? + 2520)/(m* — 601 + 9O0) = a square,

or 6om® + 2520 = a square.

This could be solved [by the preceding Lemma II] #f
60+ 2520 were equal to a square.

Now 60 arises from §.12, fe. from the product of the
perpendicular sides of (5, 12, 13);

2520 is 30.12.(12 —5), Z.e. the continued product of the
area, the greater perpendicular, and the difference
between the perpendiculars.

formed from x, 2, and its sides are therefore 329, 422, 512 ; that is, the triangles are all
similar to (3, 4, 5). Fermat shows in his note on the following problem, VI. 12, how to
find any number of triangles satisfying the conditions of this Lemma and #of similar to
(3) 4 5)-  See p. 235, note.
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Hence we must find an auxiliary triangle such that
(product of perps.) + (continued product of area,
greater perp. and difference of perps.)=a square.

Or, if we make the greater perpendicular a square and
divide out by it, we must have
(lesser perp.) + (product of area and diff. of perps.)

= a square.

Then, assuming that we have found two numbers, (1) the
product of the area and the difference of the perpen-
diculars and (2) the lesser perpendicular, satisfying
these conditions, we have to find a square (#*) such
that the product of this square into the second of
the numbers, when added to the first number, gives
a square’., y

! The text of this sentence is unsatisfactory. Bachet altered the reading of the MSS.
So did Tannery, but more by way of filling out. The version above follows Tannery’s text,
which is as follows: dwdyera: els 70 §vo dpifpots epbvras [for Svras of MSS.]<rév 7e Imd>
70D éufadol xal Tis Smepoxdis Tdv dpfdv, <kal Tov év Tf éNdogove TGV Spfdv >, aibus [for
avrs of MSS.] {nreiv Obv Twva, 8s moANarhaciacfels émi &va Tov dobévra, <kal wpoorhafiw
Tov ¥repov >, wouel TeTpdrywrov.

The argument would then be this. If (4, p, 4) be the triangle (6> p), we have to make

bp+ ; 7] (&~ p) & a square,
or, if 4 is a square, p+l b (b~ #) must be a square.
The ultimate equation to be solved (corresponding to 602+ 2520=a square) is

bpm2+ bp (6~ p) b=a square,

or, if  is a square, pmz+ = bp (b~ p)=a square ;
and thercfore, according to Tannery’s text, “the problem is reduced to this: Having found
two numbers é&,ﬂ (6-p) and p [satisfying the conditions, namely that their sum is a

square, while 4 is also ‘a square], to find after that a square such that the product of it
and the latter number added to the former number gives a square.”
The difficulty is that, with the above readings, there is nothing to correspond exactly 10

the phraseoloy of the enunciation of Lemma I, which speaks, not ofmakingp+; bp (&)
a square when 4 is a square, but of making &~ 2, & andp+§ 6p all simultaneously :quares.

But the particular solution of the Lemma is really equivalent to making #and g+ %bp (6-2)
simultaneously squares. For the triangle is formed from g, 2¢; this method of maling

4 a square (= 4a% incidentally makes & - 4 a square (=4?), and A5 bp becomes 3a% + 624,

while p+=bp (6~ ) becomes 3a%+64% Since the solution actually - used is ¢=1, the

effect is the same whichever way the problem is stated. And in any case, whether the
expression to be made a square is 3a%7%+ 6a* or 3@+ 6aS, the problem equally reduces
to that of making 37"+ 6 a square. B
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How to solve these problems is shown in the Lemmas.
The auxiliary triangle is (3, 4, 5). [Lemma L]
Accordingly, putting for the original triangle (3«, 4z, 52),

6r*
we have 6 fj—g} both squares.
Let I=m*4—- 6 be the solution of the first equation ;
then 75 &

Tt — L2+ 36°
The second equation therefore gives

,,__96‘A + L =a square,
i t2m 36 o6 o Sdue
whence 12m% 4+ 24 = a square,

and we have therefore to find a square (#*) such that
twelve times it 4 24 is a square; this is possible, since
12+ 24 is a square [Lemma II].

A solution is 7 = 25, .

whence r =, -

and (Lz, =) E) is the required triangle™.
19° 19" 19
13. To find a right-angled triangle such that its area minus
either perpendicular gives a square.
We have to find an auxiliary triangle exactly as in the

last problem ;

Bachet’s reading is dwdyerar els 70 o dpfudy So@évrwr Tob TE éuPadod, kal Ts
éXdogovos T@r wepl Taw Bpbiwv, alrols {qrely Terpdywrdy Twa, 8s wolawlasiacfels éxl
éva Tdv Sobévrwr, kal TpoohaSiw Tov Erepor, Tou TETpdywWror.

1 Fermat observes that Diophantus gives only one species of triangle satisfying the
condition, namely triangles similar to (3, 4, 5), but that by his (Fermat’s) method an infinite
number of triangles of different species can be found to satisfy the conditions, the first
being derived from Diophantus’ triangle, the second from the new triangle, and so on.

Suppose that the triangle (3, 4, 5) has been found satisfying the condition that

1
En+§E—m). ; fn=a square,
where §, 7 are the perpendicular sides and £> 7.
To derive'a second such triangle from the first (3, 4, 5), assume the greater of the two
perpendicular sides to be 4 and the lesser 3+ x.

Then Ep+E(E-7). {,,71:36—[2.\’—81’:3 square.
Also P=8+9*=25+6x+x*=a square.
We have therefore simply to solve the double-equation
36-120— 8x2=u’}
25+ bx+ a2=27 1
which is a matter of no difficulty. As a matter of fact, the usual method gives

_ 20667 - . [ 20667 23729165
T+ 3= g3nasy 2nd the triavgle is { o0 80" 4 se31189 )
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this triangle is (3, 4, 5), and accordingly we assume for
~ the triangle of the problem (3r, 4%, 52).
One condition then gives 61— 4r=a square = 4% say

(m?< 6),
g Moy,

and ES e
The second condition gives 62? — 3x = a square; and, by

substitution,

92 LAy uare,
w— 12m*+ 36 6— 0t a

or 24 + 12m* =a square.
This is satisfied by m =1,

whence =4, and the required triangle is (’—52 ; %5 : 4) .

Or, if we do not wish to use the value 1 for »,
let m =z + 1, and (dividing by 4) we have
3m® +6 =322+ 62 + 9 =a square ;
z must be found to be not greater than 12 (in order that
»* may be less than 6), and » will not be greater than
22, The solution is then rational®.

14. To find a right-angled triangle such that its area minus the
hypotenuse or minus one of the perpendiculars gives a square.
Let the triangle be (3%, 4%, 57).
. 622 — 51
Therefore i 3x} are both squares.
Making the latter a square (= #%*), we have

=1 8 STderas;
L oy (m* < 6).

! Diophantus having solved the problem of finding a right-angled triangle ¢, #, &
(¢ being the hypotenuse) such that

fn-§
are both squares,
T
R
Fermat enunciates, as susceptible of solution by his method, but otherwise very difficult,
the corresponding problem of making

i % én
both squares.
T
L &
This problem was solved by Euler (Novi Commentarii Acad. Pelropol. 1749, 11 (1751),
PP- 49599 = Ct tationes arithmeticae, 1. pp. 62-72).
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The first equation then gives
54 o
mt—12m*+ 36 6 —m
or 157 — 36 = a square.

This equation we cannot solve because 15 is not the sum of
two squares’. Therefore we must change the assumed
triangle.

Now (with reference to the triangle 3, 4, 5) 157 =the
continued product of a square less than the area, the
hypotenuse, and one perpendicular ;

while 36 = the continued product of the area, the perpen-
dicular, and the difference between the hypotenuse
and the perpendicular.

Therefore we have to find a right-angled triangle (4, p, &,
say) and a square (7:?) less than 6 such that

withp — § pb . p (/i —p) is a square.

If we form the triangle from two numbers X, X, and
suppose that p=2X,X,, and if we then divide
throughout by (X, — X,)* which is equal to 2 —p, we
must find a square 2*[= #*/(X;, — X,)*] such that

2ip— 4 pb . p is a square.

The problem can be solved if X,, X, are “similar plane
numbers” f

Form the auxiliary-triangle from similar plane numbers
accordingly, say 4, 1. [The conditions are then
satisfied?.]

[The equation for 7 then becomes

8.17m* —4.15.8.9=a square,

, = a square,

or 136 — 4320 = a square.]
Let* m?=36. [This satisfies the equation, and 36 < area
of triangle.]

1 See p. 70 above.
2 Diophantus states this without proof. [A ‘¢ plane number” being of the form a . 5,
2
a plane number similar to it is of the form ga.:—': b or "% ab.]
The fact stated may be verified thus. We have
; 22 (X2 + X,%) 2.X1 Xa - X Xz (X2 - X2?) 2.X Xp=a square.
The condition is satisfied if 22=.X.Y3, for the expression then reduces to 4X;2.Ys%. Xo2.
In that case X7 Xj is a square, or Xi[Xg is a square.
3 Since X1=4, X3=1, we have 2 =17, p=8, b=13, 22= X Xp=4, and

z’h)-i;b.p=4. 17.8-4.15.8=2.32=64, a square.

4 The reason for this assumption is that, by hypothesis, z2=m?/ (X}~ X312, or
4=m23?, and m2=36.
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The triangle formed from 4, 1 being (8, 15, 17), we assume
8x, 152, 17x for the original triangle.

We now put 602* — 8x = 3627,

and r=4.

The required triangle is therefore (;, 5, 5:;7) :

Lemma to the following problem.

Given two numbers, if, when some square is multiplied into
one of the numbers and the other number is subtracted from
the product, the result is a square, another square larger than
the aforesaid square can always be found which has the same
property.

Given numbers 3, 11, side of square 5, say, so that
3.25 —1F=64, a square.
Let the required square be (x + 5)%

Therefore
3(x+5)— 11 =322+ 307+ 64 = a square
= (8— 22y, say,
and x=62.
The side of the new square is 67, and the square itself
4489.

15. To find a right-angled triangle such that the area added
to either the hypotenuse or one of the perpendiculars gives a
square.

In order to guide us to a proper assumption for the
required triangle, we have, in this case, to seek a
triangle (%, p, &, say) and a square (#*) such that
m? > % pb, the area, and
) whp — % pb. p (f—p) is a square.

Let the triangle be formed from 4, 1, the square (?)
being 36, as before ;

but, the triangle being (8, 15, 17), the square is not
greater than the area.

We must therefore, as in the preceding Lemma, replace
36 by a greater square.

Now /2p=136,and }p0.p(h—p)=60.8.9=4320,

so that 136m* — 4320 = a square,

which is satisfied by #2= 36 ; and we have to find a larger
square (2%) such that

1362® — 4320 = a square.
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16. To find a right-angled triangle such that the number
representing the (portion intercepted within the triangle of the)
bisector of an acute angle is rational®.

A
bz, 4r
Cc 3—3z D¥* B

Suppose the bisector 4D = 5%, and one segment of the
base (DB) = 3x; therefore the perpendicular = 4.
Let the whole base CB be some multiple of 3,say 3; then
CD=3—3x
But, since 4D bisects the angle CA B,
AC:CD=AB:BD;
therefore the hypotenuse AC =4(3 —3x) =4 —4x.

whence x=~263 and the required auxiliary triangle is formed from —169—,1 or from 29, 12,

T
the sides being accordingly 985, 697, 6g6.
(Fermat observes that the same result is obtained by putting y—; for x in the

expression x4+ 4x° +62%+ 6x+2; for we must have
2
)ﬂ+zy"+%y’+§y+%= a square:(i'fsy—y"') » 52y,

whence y=%, so that x=y—;—=i—§, and the triangle is formed from :—2, 1 or from
29, 12, as before.)
We now return to the original problem of solving

I
§= fn=a?
ol
o 2
We assume for the required triangle (985x, 697, 696x) and we have %Er,:fz,ﬂ 556x%,
so that
9ShE 242556}2} must both be squares.
697x — 24255622
Assume that 697x — 242556x° = (697x)?,
and we have x- 348:4’;697:&

985 697 696
1045° 1045” 1045/"
[The ¢8sx — 2425564 is a square by virtue of the sides 985, 697, 696 satisfying the
985 1 697.696
1045 3" (1045)7

1 > X >
whence x—;°_<4_5 , and the required triangle is (

conditions of the Lemma; for ¢85x - 242556x%= which is a square

if 985.1045 —£.697 . 696 is a square, and 1045:697+§.696.]

1 Why did not Diophantus propound the analogous problem “To find a right-angled
triangle such that the sides are rational and the bisector of the right angle is also rational *?
Evidently because he knew it to be impossible, as is clear when (a, ¢ being the perpen-

diculars) the bisector is expressed as a‘:‘% 2. (Loria, op. cit. p. 148 n.)
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Therefore [by Eucl. 1. 47]
162* —32r + 16 = 162°+ 9,
and r=qo
If we multiply throughout by 32, the perpendicular = 28,
the base = g6, the hypotenuse = 100, and the bisector
=35
17. To find a right-angled triangle such that the area added
to the hypotenuse gives a square, while the perimeter is a cube.
Let the area be » and the hypotenuse some square
minus x, say 16 —x.
The product of the perpendiculars = 2x;
therefore, if one of them be 2, the other is x, and the
perimeter = 18, which is not a cube.
Therefore we must find some square which, when 2 is
added to it, becomes a cube’.

! “Did Diophantus know that the equation #2+42=2* only admits of oxe solution
u=5, v=3? Probably not” (Loria, ¢p. cit. p. 155). The fact was noted by Fermat
(on the present proposition) and proved by Euler.

Euler’s proof (4lgcbra, Part 11. Arts. 188, 193) is, I think, not too long to be given

_here. Art. 188 shows how to find x, y such that @1®+¢y* may be a cube. Separate
ax?+cy? into its factors an/a+y/(—¢), xJa-y/(-¢), and assume
xa+yJ(-)={pJatgJ (-}
aa-yJ(=={pa-gJ (-9}
the product (22?+ ¢¢%? being a cube and equal to ax®+¢)%
To find values for x and y, we write out the expansions of the cubes in full, and
xfatyN(—)=ap’ Ja+3ap*q (- 0) - 327 Na - J(-9),
za—y(-)=apJa-3a8 J(- )= 308 Jat+eg’ (-9,

whence x=ap® - 3¢0¢%
y=36p% - cq’.
For example, suppose it is required to make x2+y* a cube. Here a=1 and ¢=1,
so that =g~ 3p¢%
r=35 -7
while 22+ 2=(22+¢%3. Ifnow p=12 and ¢=1, we find x=2 and y=11, whence
224yt=125=35%

Now (Art. 193) let it be required to find, if possible, in integral numbers, other squares
besides 25 which, when added to 2, give cubes.

Since x2+ 2 has to be made a cube, and 2 is double of a square, let us first determine
the cases in which 1%+ 252 becomes a cube. Here a=1, c=2, so that

=g -6pg% y=389-3";
therefore, since y= % 1, we must have
30% -2 or g3 —2gP)=*1;

consequently ¢ must be a divisor of 1.

Let, then, g=1, and we shall have 3p2-2= *1.

With the upper sign we have 32*=3 and, taking p= -1, we find x=3; with the lower
sign we get an irrational value of p which is of no use.

H. D 16
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Let the side of the square be 7+ 1, and that of the cube
m—1.

Therefore  m®— 3m* + 3m — 1 =m® + 2m + 3,
from which 2 is found! to be 4.

Hence the side of the square = 5, and that of the cube = 3.

Assuming now x for the area of the original triangle,
25—« for its hypotenuse, and 2, » for the perpen-
diculars, we find that the perimeter is a cube.

But (hypotenuse)* = sum of squares of perpendiculars ;
therefore 2?—50r+625 =22+ 4;

x=921 and the problem is solved.

18. To find a right-angled triangle such that the area added
to the hypotenuse gives a cube, while the perimeter is a square.
Area z, hypotenuse some cube #znus x, perpendiculars z, 2.
Therefore we have to find a cube which, when 2 is added
to it, becomes a square.
Let the side of the cube be 7 — 1.
Therefore #® — 3m* + 3m + 1 = a square = (14m + 1)2 say.
Thus 7z =21, and the cube = (17)* = 4243,
Put now x for the area, z, 2 for the perpendiculars, and
4918 _ x for the hypotenuse;
and x is found from the equation (4§}2 —x)*=2"+ 4.
[+ = 2434435, and the triangle is (2, 28335455, 2444385°).]
19. To find a right-angled triangle such that its area added to
one of the perpendiculars gives a square, while the perimeter is
a cube.
Make a right-angled triangle from some indeterminate odd
number?, say 2x+1;
then the altitude = 22+ 1, the base =222+ 2x, and the
hypotenuse =222+ 22+ 1.

It follows that there is no square except 25 which has the required property.

Fermat says (*‘Relation des nouvelles découvertes en la science des nombres,”
Oeuvres, 11. pp. 433—4) that it was by a special application of his method of descente,
such as that by which he proved that a cude cannot be the sum of two cubes, that he proved
(1) that there is only one integral square whick when increased by 2 gives a cube, and
(2) that there are only two squares in integers whick, wken added to 4, give cubes. The
latter squares are 4, 121 (as proved by Euler, A/gebra, Part 11. Art. 192).

1 See pp. 66, 67 above.

3 This is the method of formation of right-angled triangles attributed to Pythagoras.
If mis any odd number, the sides of the right-angled triangle formed therefrom are 7,

2 2
%(m”— 1), ~ (m2 1), for m2+ {l (m? 1)} = {i (m? + 1)} . Cf. Proclus, Comment.
on Bucl. 1. (ed. Friedlein), p. 428, 7 sqq., etc. etc.
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Therefore 2m*=a cube, or 2m = a cube = 8, say.

Thus m=4, =% =14, *=4.

But one of the perpendiculars of the triangle is 22— 1, and
we cannot subtract 1 from ;.

Therefore we must find another value for x greater than 1 ;
hence 2< mr< 4.

And we have therefore to find a cube such that 1 of the
square of it is greater than 2, but less than 4.

If z® be this cube,

2<if< ¢4,

or 8< #<16.

This is satisfied by s° = %22, or 2*=2T,

Therefore m =2%, m*=12}, and » = 4§12, the square of
which is > 1.

i i 102 15055 309233
Thus the triangle is known [1034, 215055 3092331,

22. To find a right-angled triangle such that its perimeter is
a cube, while the perimeter added to the area gives a square.

(1) We must first see how, given two numbers, a triangle
may be formed such that its perimeter = one of
the numbers and its area = the other.

Let 12, 7 be the numbers, 12 being the perimeter, 7 the

area.

Therefore the product of the two perpendiculars

= 14=£. 14%.
If then ;Ic, 14x are the perpendiculars,
hypotenuse = perimeter — sum of perps. = 12 —;: — 14%.
Therefore [by Eucl. 1. 47]
:—A+ 19642 + 172—2}%—336x=%2+ 1964%;

that is, 172 = 3361+ 2;4 :
or 172x = 33647 + 24.

This equation gives no rational solution, because 86* — 24 . 336
is not a square.
Now 172 = (perimeter)® + 4 times area,
24. 336 = 8 times area multiplied by (perimeter)’
(2) Let now the area =, and the perimeter = any
number which is both a square and a cube, say 64.
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Therefore {} (642 + 4m)|*— 8.647. m must be a square,

or 4 — 24576m + 4194304 = a square.

Therefore m? — 6144m + 1048576 = a square

Also m+64=a square} .

To solve this double-equation, multiply the second by
such a number as will make the absolute term the
same as the absolute term in the first.

Then, if we take the difference and the factors as usual,
the equations are solved.

[After the second equation is multiplied by 16384, the

" double-equation becomes )
m* —6144m + 1048576 = a square
16384 + 1048576 =a square} ’

The difference is ® — 22528m.

If 2, 1 — 22528 are taken as the factors, we find = 7680,
which is an impossible value for the area of a right-
angled triangle of perimeter 64.

We therefore take as the factors 11, {47 — 2048 ; then,
when the square of half the difference is equated to
the smaller of the two expressions to be made squares,
we have

(89 + 1024 ) = 163847 + 1048576,
and m = 33424,

. i I
Returning now to the original problem, we put 2 2mE

for the perpendicular sides of the required triangle,
and we have

(64 . zmx)2 = + 4m’?,
x g5
which leads, when the value of  is substituted, to
the equation
788482 — 8432x +225=0.
The solution of this equation is rational, namely

27 +2 2 9
=3 58563=E58 or 176"
Diophantus would of course use the first value, which

would give (448, 178, 5388) as the required right-

angled triangle. The second value of x clearly gives
the same triangle.]
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23. To find a right-angled triangle such that the square of its
hypotenuse is also the sum of a different square and the side of
that square, while the quotient obtained by dividing the square
of the hypotenuse by one of the perpendiculars of the triangle is
the sum of a cube and the side of the cube.

Let one of the perpendiculars be 7, the other 22
Therefore (hypotenuse)?=the sum of a square and its

side ; also A2

= 2* 4 x = the sum of a cube and its

side.
It remains that 2* 4 22 must be a square. .
Therefore 2* + 1 = a square = (¥ — 2)?, say.
Therefore » = #, and the triangle is found [}, %, 1]

24. To find a right-angled triangle such that one perpendicular
is a cube, the other is the difference between a cube and its side,
and the hypotenuse is the sum of a cube and its side.

Let the hypotenuse be 2*+, and one perpendicular
-z

Therefore the other perpendicular = 222=a cube = 2%, say.

Thus x = 2, and the triangle is (6, 8, 10).

It is on Bachet’s note to v1. 22 that Fermat explains his method of solving
triple-equations, as to which see the Supplement, Section v.

[No. 20 of the problems on right-angled triangles which Bachet
appended to Book vI. (““To find a right-angled triangle such that its area
is equal to a given number ”) is the occasion of Fermat’s remarkable note
upon the theorem discovered by him to the effect that 7%e area of a right-
angled triangle the sides of which are rational numbers cannot be a square
number..

This note will be given in full, with other information on the same
subject, in the Supplement.] {
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All numbers from 3 upwards in order are polygonal, containing
as many angles as they have units, eg. 3, 4, 5, etc.

“As with regard to squares it is obvious that they are such
because they arise from the multiplication of a number into
itself, so it was found that any polygonal multiplied into a
certain number depending on the number of its angles, with
the addition to the product of a certain square also depending
on the number of the angles, turned out to be a square. This
1 shall prove, first showing how any assigned polygonal
number may be found from a given side, and the side from
a given polygonal number. I shall begin by proving the pre-
liminary propositions which are required for the purpose.”

1. If there are three numbers with a common difference, then
8 times the product of the greatest and middle + the square of the
least = a square, the side of which is the sum of the greatest and
twice the middle number.
Let the numbers be 4B, BC, BD in the figure, and we
have to prove 848 .BC + BD*=(AB+ 2BC).

E A ¢ b B

By hypothesis AC= CD, AB=BC+CD, BD=BC-CD.
Now 8A4B.BC=4AB.BC+ (4BC*+4BC.CD).
Therefore 848 .BC+ BD*?
=4AB.BC+4BC*+(4BC.CD + BD?)
=4A4B.BC+4BC*+ AB?, [Eucl. 11. 8]
and we have to see how AB?*+4AB.BC+ 4BC? can
be made a square.
[Diophantus does this by producing B4 to E, so that
AE = BC, and then proving that
AB*+ 4AB . BC+ 4BC*=(BE+ EAY.]
1t is indeed obvious that
AB*+ 4AB . BC+ 4BC*=(AB +2BC).

2. If there are any numbers, as many as we please, in AP,
the difference between the greatest and the least is equal to the
common difference multiplied by the number of terms less one.
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[That is, if in an A.P. the first term is @, the common
difference & and the greatest term /, » being the
number of terms, then

l—a=(mn—-1)b]
Let AB, BC, BD, BE have a common difference.

A c D E B

Now AC, CD, DE are all equal.
Therefore EA = AC x (number of terms AC, CD, DE)
= AC x (number of terms in series — 1).

If there are as many numbers as we please in A.P, then

(greatest + least) x number of terms = double the sum of the

terms.

[That is, with the usual notation, 25 = 7z (/+a).]
(1) Let the numbers be 4, B, C, D, E, F, the number of
them being evern.

A B O D E , F
G L M K 3 H

Let GH contain as many units as there are numbers,
and let GH, being even, be bisected at XK. Divide
GK into units at L, M.

Since F=-D=C-A4,
F+A=C+D.
But F+A=(F+4).GL,;
therefore C+D=(F+4).LM.
Similarly E+B=(F+A4).MK.

Therefore, by addition,
A+B+C+D+E+F=(F+4).GK.
Therefore 2(A+B+..)=2(F+4).GK

=(F+4).GH.
(2) Let the number of terms be 0dd, the terms being
il JERNC D) T
Aol Co oD B
G e K ' G

Let there be as many units in #G as there are terms,
so that there is an odd number of units.
Let FH be one of them; bisect ZG at K, and divide /K

into units, at Z.
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Since E-C=C-A,
E+A=2C=2C.LK.
Similarly B+D=2C.LH,
Therefore A+E+B+D=2C. HK
=C. HG.
Also C=C.HF;

therefore, by addition,
A+B+C+D+ E=C.FG;
and, since 2C=A + E,
2(A+B+C+D+E)=(A+E).FG.
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4. If there are as many numbers as we please beginning with
I and increasing by a common difference, then the sum of all
x 8 times the common difference + the square of (common
difference — 2) = a square, the side of which diminished by 2
= the common difference multiplied by a number which when

increased by 1 is double of the number of terms.

[The A.P. being 1, 1+ 4,... 1 +( — 1) 6, and s the sum,

we have to prove that
5.80+(6—2)y={b(2n—1)+2},
z.e. 8bs = 4bn* — 4 (& — 2) nb,
or 2s=bn*~(b—2)n
=n{2+(n—1)b}

The proof being cumbrous, I shall add the generalised
algebraic equivalent in a column parallel to the

text.}

Let AB, CD, EF be thetermsin | 146, 1425, I + 35,..

A.P. after 1.
G
P A B o’ M
K N
(o] D
= o]
E T f
H
Let GH contain as many units ”

as there are terms including 1.
Difference between £/ and 1
= (diff. between ABand 1) x (GH—-1). l—1=(n-1)0
[Prop. 2] |
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Put AK, EL, GM each equal

to unity.

Therefore LF=KB.MH.

Make KN =2, and we have to

inquire whether
(sum of terms) x 8K B + NB*
=2+ KB(GH+ HM)].

Now sum of terms
= (FE+EL).GH
=3(LF+2EL).GH
=3(KB.MH.GH +2GH),

since LF= KB .MH [above].

Bisecting #7H at O, we have

(sum of terms)
=KB.GH.HO+ GH.
We have therefore to inquire
whether .
(KB.GH.HO+GH).8KB+ NB*
is a square.

Now KB.GH.HO.8KB
=8GH.HO.KE?
=4GH.HM . KB

Is then

4GH .HM .KB*+8KB.GH+ NB?
a square?

Now 8GH.KB

=4GM . KB+ 4(GH+HM) KB.

Also 4GM . KB=2NK.KB;

and, adding VB? the right-hand side
becomes KB?+ KN [Ewcl ¥ szl

Is then 4GH.HM.KB?

+4(GH+ HM)KB+ KB*+KN?
a square?

Again, KB*+4GH.HM .KB?*
=GM* . KB*+4GH.HM.KB*?
=(GH+ HMy . KB [Eucl. 11 8]

Is then (GH+ HM)y.KB?
+4(GH+ HM)KEB + KN*®

a square?

Make the number VO’ equal to

(GH+ HM). KB,

[Prop. 3]

ON POLYGONAL NUMBERS

Call the expression on
the left-hand side X.

s=3U+0n

=§(/—1+4+2)2n
=} {(n—1)bn+ 2n}

X=bn.”—;l.8b+8bn
+(b—2)

= 4n(n—1)*+8bn+(b—2)

=4qn(n—1)0
+4{n+(m—1)}b+b+ 2

=(n+n-178
+4{n+(n—1)} b+ 22
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including unity satisfies the same formula? [literally
“does the same problem ”] as 5 does,

while PB is any number and is also always a polygonal,
the first after unity (for 4.2 is a unit and AB is the
term next after it), and has 2 for its side,

it follows that the sum of all the terms of the progression
is a polygonal with the same number of anglesas P25,
the number of its angles being the same as the
number of units in the number which is greater by 2,
or PK, than the common difference K5, and that its
side is GH which is equal to the number of terms
including 1.

And thus is demonstrated what is stated by Hypsicles in
his definition, namely, that,

“If there are as many numbers as we please beginning
from 1 and increasing by the same common difference,
then, when the common difference is 1, the sum of all
the terms is a triangular number ; when 2, a square;
when 3, a pentagonal number [and so on]. And the
number of the angles is called after the number
exceeding the common difference by 2, and the side
after the number of terms including 1.”

[In other words, if there be an arithmetical progression

I, 1+6, 1+26,...14+(2—1)0,
the sum of the 7 terms, or ¥z {2 + (2 — 1) 4}, is the
nth polygonal number which has (& + 2) angles.]

Hence, since we have triangles when the common dif-
ference is 1, the sides of the triangles will be the
greatest term in each case, and the product of the
greatest term and the greatest term increased by I
is double the triangle.

1 Nesselmann (pp. 475-6), exhibits this result thus.

Take the A.P. 1, 1+6, 1+26, ... 1+(z—1)b.

If s is the sum, 856+ (6—2)2=1{b (21— 1) +2}2

If now we take the three terms -2, 4, 6+ 2, also in A.P.,
86 (8+2)+ (b—2)2={(5+2) +26}%

=(36+2)%
Now &+ 2 is the sum of the first two terms of the first series, and corresponds there-
fore to s when =23 and 3=2. 2 — 1, so that 3 corresponds to 27 — 1.

Hence s and &+ 2 are subject to the same law ; and therefore, as 442 is a polygonal
number with & + 2 angles, s is also a polygonal number (the zth) with 4+ 2 angles.
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And, since PB is a polygonal with as many angles as
there are units in it,

and 8PFB .(PB —2)+(PB—4)= a square (from above,
BK being equal to PB — 2, and NB to PB —4),

the definition of polygonal numbers will be as follows :

Every polygonal multiplied by 8 times (number of angles
—2) 4+ square of (number of angles — 4) =a square®.

The Hypsiclean definition and the new one being thus
simultaneously proved, it remains to show how, when
the side is given, the prescribed polygonal is found.

For, having given the side G'/7 and the number of angles,
we know KB.

Therefore (GH + HM) KB, which is equal to NO', is also
given; therefore KO (=NO'+ NK or NO'+2) is given.

Therefore KO is given;

and, subtracting from it the given square on N5, we
obtain the remaining term which is equal to the
required polygonal multiplied by 8K /5. Thus the
required polygonal can be found.

Similarly, given the polygonal number, we can find its
side GAH. Q. E.D.

Rules for practical use.

(1)  To find the number from the side.

Take the side, double it, subtract 1, and multiply the
remainder by (number of angles —2). Add 2 to the
_product; and from the square of the sum subtract
the square of (number of angles —4). Dividing the
remainder by 8 times (number of angles — 2), we
have the requireﬂ number,

! Hultsch points out (art. Diophantos in Panly-Wissowa’s Real-Encyclopadic der
classischen Altertumswissenschaften) that this formula
82 (a- 2)+(a - 4)*=a square
shows that Diophantus intended it to be applied not only to cases where a is greater than
4 but also where a=4 or less. For 36, as Diophantus must have known, besides being
the second 36-gon, is also a triangle, a square, and a 13-gon, inasmuch as
8.36(3-2)+(3—4)*= 289=17%
8.36(+—2)+(4-4)2= 576=124%
8.36 (13~ 2)+ (13— 4)2 =3249=57"
And indeed it is evident from Def. g of the Arithmetica that (3~ 4)*=1, while it is
equally obvious that (4 —4)%=o.
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[If 2 be the #th a-gonal number,
P.8(@—2)+(a—4y={2+(2n—1)(a-2)}
plzrGr=n@=2l—(e=ar

8(a—2)

(2) To find the side from the number.
Multiply the number by 8 times (number of angles — 2);
add to the product the square of (number of angles ~4).
We thus get a square. Subtract 2 from the side of
this square and divide the remainder by (number of
angles —2). Add 1 to the quotient, and half the
result gives the side required?

["=% (\/[P' He O bl AN 1)]

or

a—2
Given a number, to find in how many ways it can be polygonal.

Let AR be the given number, BC  [Algebraical equivalent.)
the number of angles, and in BC take | Number 48 = P.

CD=2,CE=4. Number of angles BC=a.
_H B i L
AT B c K

Since the polygonal 4B has BC

angles,

(1) 84B.BD + BE*=asquare=FG? | 8P (a—2)+(a—4)

say. =24+ (2n—1)(a—2)}
Cut off AH equal to 1; = X? say.

therefore 8458 .BD But 8P (a-2)

=44AH .BD+4(AB+BH)BD. | =4(a-2)+4(2P—1)(a—2)
Make DX equal to 4 (AB+ BH), | =2(a—2).2+4(2P-1)(a—2).
and for 44H . BD put 28D . DE. DK =402P—1)

1 Fermat has the following note. ‘A very beautiful and wonderful proposition which
I have discovered shall be set down here without proof. If, in the series of natural
numbers beginning with 1, any number n be multiplied into the next following, n+1,
the product is twice the nth triangular number; if n be multiplicd into the (n+1)th
triangular number, the product is threc times the nth tetvahedral number; if n be
multtplted into the (n+ 1)tk tetrakedral number, the product is four times the nth triangulo-
triang b [ﬁgured ber of ath order); and so on, ad infinitum. 1 do not
think there can be, in the theory of numbers, any theorem more beautiful or more
general. The margin is too small, and I am not at liberty, to give the proof.” (Cf.
Letter to Roberval of 4 November 1636, Ocuvres de Fermat, 1. pp. 84, 85.) For a proof,
see Wertheim’s Diophantus, pp. 318-20.
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Therefore
(2) FG*=KD.DB +2BD.DE + BE®,

(3) =KD.DB+BD*+ DE?,
[Eucl. 11. 7]
4) =KB.BD+DE* [Eucl. 1L 1]
But, since DK =4(AB+ BH),
DK >4A4H >4,
and DC=half 40r 2;
therefore CK > CD.

Therefore, if DK be bisected at
L, L falls between C and K.
And, since DK is bisected at L,
KB.BD 4+ LD*= LB,
whence KB.BD=LB*—LD*
Therefore, by (4) above,
(5) FG*=BL*— LD*+ DE?,
or FG*+DL*=BL*+ DE?,
(6) or LD*— DE*=LB*— FG~

Again, since ED =DC, and DC
is produced to L,
EL.LC+CD*=DL:®,;
therefore £L.LC=DL*— DC*

=DL*— DE?
) =LB*— FG2
Put FM=BL (for BL>FG,
since FG*+DL*=BL*+ ED?,
while DL? > ED?3).

Therefore FM*— FG*=EL.LC.

Now, DK being bisected at L and
being equal to 4 (4B + BH),
DL =2(AB+ BH).

And DC=24H.
Therefore CL =4BH,
or BH=1CL.
But AH(=1)=}EC;
therefore AB=1EL,
while BH=1}CL.

Therefore AB. BH=1%EL.LC,
or EL . LC=164B.BH.
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X?=4(2P-1)(@a—-2)
+2(a—2).2+(a—4)
=4(2P=1)(a-2)
+ (a—2) + 22
={4(2P-1)+a—-2}(a—2)
+ 2*

DL=2(2P—1)
[BL=2(2P —1)+a—-2]

Xr={2(2P-1)+a—2)
—{2@P—-1)pP+2*

{2@eP-1)p-2°

=2@P-1)+a—2pP-X?

[EL=2(2P—-1)+2
CL=2(2P—-1)-2]

(2(2P—-1)+2}{2(2P—1)—2]
={2(2P— 1) +a—2p—X*

FM=2(P-1)ta—2

 CL=4(P-1)

EL =4P
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(8) Therefore 16P(P—1)
1648 . BH = MF*— FG* ={2(2P—-1)+a—2}- X*
©) =GM*+2FG.GM. | ={2(2P—1)+a—2-X}
+2X{2(2P—1)+a—2-X}
Therefore GM is even. [={2(2P-2)-2(n-1)(a-2))?
Let G be bisected at IV ......... +2{z+(2n—1)(a~-2)}
........................ e s S R D (PR =2 (g1 ) (a=2) ]

[Here the fragment ends, and the question of course arises whether
Diophantus ever actually solved the problem of finding in how many
different ways a given number can be a polygonal. Tannery went so far
as to call the whole of the fragment, from and including the enunciation
of the problem, the “vain attempt of a commentator” to solve it
Wertheim? has however shown grounds for thinking that Diophantus did
solve the problem and that the fragment is a genuine part of his argument
leading to that result. The equation

8P(a—2)+(a—4)={2 +(2nn—1)(a—2)}
easily reduces (by algebra) to
8P(a—2)=4gn(a—2){z2+ (n—1)(a—2)},
or 2P=n{z+(n—1)(a~2)}.

Wertheim has shown how this result can be obtained by a continuation
of the work, from the point where the fragment leaves off, in the same
geometrical form which is used up to that point®, and how, when the

! Dioph. I. pp. 4767, notes.

2 Zeitschrift fiir Math. u. Physik, hist. litt. Abtheilung, 1897, pp. 121-6.

3 The only thing, so far as I can see, terding to raise doubt as to the correctness of

this restoration is the fact that, supposing it to be required to prove geometrically, from
the geometrical equivalent of
8P(a~2)+(a-4)2={2+(2m—1) (a—2)}?,

that 2P=n{2+(n-1)(a-2)},
it can be done much more easily than it is in Diophantus’ proposition as extended by
Wertheim.

For let #G=2+(27—1)(a~2). Cut off FR equal to 2, and produce K# to S so that
RS=ag-2,

2n(a—2)
,/W
s ey
7 F3 R 7 G
We have now 8P.SR=FG?-SF?
=(SG-SF)R- SF?
=S5G2-25G, SF.
Bisect SG at 7, and divide out by 43
therefore 2P.SR=ST?-ST.SF
=S7(ST- SF)
=S

=ST.(FR+RT).
Now S7'=#n.SR, and FR=2, while R7'=(n-1). SR=(n~1)(a-2).
It follows that 2P=n{2+(n-1)(a-12)}.
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or 3 |
(13) 44B*—24AB(FS— RN) ‘ 4P
—RN.FS=4AB—44AB. AH. | —2P{(n—1)(a—2)+2—n(a—2)}
—n(a-2){(n—1)(a—2)+2}
=4 -4 P
Therefore
(14) 2AB(FS— RN)+ RN . FS 2P {2 —(a—2)}
‘=44B.AH, +n(a-2){(n—1)(a—2)+2}
= V&
or
(15) 24B(2AH + RN-FS)=RN.FS. | 2P(a—2)
=n(@—2){(n—1)(@-2)+2}

Now RN =FN—FR=FM—-NM—-FR=FM-}GM-FR
—BL—}GM~-24B=BD +}DK-}GM—24B
=BD+24B+2BH~-}GM - 248
~BD+2BH~-}GM,

and FS=FR—-RS
=24B-}GM.
Therefore RN—-FS=BD+ 2BH—-248
. =BD—-24H,
and RN—-FS+24H=BD.

Again, we have
RN=BD+2BH-3GM=BD+2BH-}BL+}FG

=BD+2BH-1BD-1DL+}FG
=}BD +2BH-} DL+ }FG
=4BD + :BH—(AB+BH)+ L FG
=1BD+BH— AB+}FG
=4BD— AH+}FG
=1(BD+ FG~24H).

But, from the rule just preceding this proposition,

FG=BD(2n—1)+2;

therefore BD+ FG=z2n.BD + 2,
or BD+FG-24H=2n.BD);
therefore RN=n.BD.
Accordingly the equation (15) above becomes
(16) 24B.BD=n.BD. FS, 2P(a—2)
or =n(a—2){(rn—1)(a—2)+ 2}
(17) 24B=n. FS. 2P=n{(n—1)(a—2)+2}

Thus the double of any polygonal number must be divisible by its
side, and the quotient is the number arrived at by adding 2 to the product
of (side — 1) and (number of angles — 2).

For a triangular number the quotient is 7 + 1, and is therefore greater
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than the side; and, as the quotient increases by » —1 for every increase
of 1 in the number of angles (a), it is always greater than the side.

We can therefore use the above formula (17) to find the number of
ways in which a given number £ can be a polygonal number. Separate 2 2
into two factors in all possible ways, excluding 1.22. Take the smaller
factor as the side (#). Then take the other factor, subtract 2 from it,
and divide the remainder by (z - 1). If (2 —1) divides it without a
remainder, the particular factors taken answer the purpose, and the quotient
increased by 2 gives the number of angles (a). If the second factor
diminished by 2 is not divisible by (#—1) without a remainder, the
particular division into factors is useless for the purpose. The number of
ways in which 2 can be a polygonal is the number of pairs of factors
which answer thie purpose. There is always one pair of factors which will
serve, namely 2 and 2 itself.

The process of finding pairs of factors is shortened by the following
considerations.

2P=n{(n-1)(@a—2)+2};

therefore 2Pn=4+an—a—2n,
and =2+ =asa)
n(n-1)’
2(P—n)

therefore not only 22/~ but also oS must be a whole number and,
as a is not less than 3,

2/ (P= n) S GRe

n(n—1) =

and consequently
-1+ J(1+8P)
2

Thus in choosing values for the factor #» we need not go beyond that
shown in the right-hand expression.

Example 1. In what ways is 325 a polygonal number?

Here — 1 + /(1 +8P) =—1+,/(2601) = 50. Therefore z cannot be
greater than 25. Now 2.325=2.5.5.13, and the only possible values
for n are therefore 2, 5, 10, 13, 25. The corresponding values for a are
shown in the following table.

n<or=

” 2 5 1o} 13|25

a 325034 9| 6|3

Example 2. FP=120.

17—2
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CONSPECTUS OF THE ARITHMETICA

Equations of the first degree with one unknown.
7. x—a=m(x—0b).
8. x+a=m(x+d).
9. a—x=m(b—x).
10. Xx+b=m(a—x).
1. x+b=m(x—a).

.39. (@a+x)b+(b+x)a=2(a+d)x,

(@+d)x+(@+x)a=2(a+x)b} (a>d).
(@+b)x+(a+x)b=2(b+x)a,
Determinate systems of equations of the first degree.
1. x+y=a, x—y=0.

2. x+y=a, x=my.
4 x—y=a, x=my.
3. x+y=a, x=my+b.
SN T r ko
5 xiy=a, —xt_y=4
1 I
6. x+y=a, Zx—;y:b.

L 12. X +Xy=J;+)Vy=ay, X, =0y, Y1 = NXy, (xl > %oy N1 >J’2)-

% x1+x,=yl+y,=zl+z2=a} 0o b oy
Xy = MYy Y1 = N%ay 5 =PXs (> &0y 31> 5, 5> 5)
15. x+a=m(y—a), y+b=n(x—"0). g

.16. y+sz=a, s+tx=b x+ty=c

17. y+s+w=a, s+w+x=56, w+x+y=6 x+y+s=d.

.18, y+z-x=a, s3+x-y=b, x+y—z=¢
. 19. yHE+W—x=a, 3+tW+X—y=5b w+x+y—z=0¢

x+y+z—w=d.

.20, X+y+z=a, Xx+y=mz y+3=nx.

I 1 1
<2l X=p g, y=sto%, z=a+;y, (x>y>3).

« o (L 2 Sy (1 ) (l )
. 18% x (nzx+a)+<pz+[ =y (ny+b + mx+a]

=z—(;-z+t) +(%_y+b>,

Determinate systems of equations reducible to the first degree

x+yiz=a.

. 26. ax=a? bx=a.
.29. xX+y=a, 22—3'=0.

* Probably spurious.
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1 1 1
1. 24. x+z(y+z)—_y+’—1(z+x)=z+;(x+_y)
[value of y + z assumed].

I I
1 25. x+;l(y+z+w)—y+;(z+w+x)

=Z+;(w+x+y)=w+;(x+_y+z)
[value of y + 2 + w assumed].
itk kA (@ 2a,) x—(}”x+a)+(%z+:>

= —(l +b)+(lx+ )-z—(I +) 2 +b)
=G SEta)= I—)z ¢ +<’—1y
[ratio of x to y assumed].
I T _I_ | _.l
V. 33. x+—z-y=m(y—;y),_y+zx—n(x zx)
[Diophantus assumes :IZ = x:| 3

Indeterminate equations of the first degree.
Lemma to 1v. 34. ay+(x+y)=a [Solutions é& dopiore.
» » IV.35. xy—(x+y)= a}»  practically found in
» o» V.36, xy=m(x+y) terms of x.]
Indeterminate analysis of the second degree.
n 8 as*+yt=at
iu. 9. x*+y'=a’+ P
. 10, x*—j*=a.
IL II. x+a=t x+b=7%
{11.12. a-x=1} b—x=0%
IL 13 x—a=u, x-b=1"~
IL I4=1IL 21I. X+y=a, X+2°=2% y+52=22%
IL I5=1IL 20. X+y=a, 2—x=1 5’ —y=102
IL 16. x=my, a®+x=u% a®+y=1~
. 19. £*—3*=m(*- 5.
IL 20. x*+y=u% YPrx=12
{11.21. BP—y=ut yP—x=1"
1. 22. &+ (x+y) =25 P+ (x+y)=2"~
{ I 23. 2 —(x+y)=214 p*— (x+y)=22
IL 24 (+))P+x=22 (x+yP+y=0~
{ L. 25. (x+y)—x=12 (x+y)P—y=12
. 26. xy+x=1% xy+y=7% v+v=a
{ IL 27. xy—x=u xy—y=9% u+v=a.
1L 28, a*P+al=122 2%+ )2=102
{ 1L 29. **—ax'=0d 2P —j3P=22
IL 30. ay+(x+y)=0 ay— (x+p)=2"
* Probably spurious.
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V. 29.
{w. 30.
1VR3iT:
v. 32.
V. 39.
V. 40.

V. 4
% G
VGY

CONSPECTUS OF ARITHMETICA

P2+y+d+wlrx+yrztw=a

2+ +2+ - (x+y+z+w)=a.

x+y=1, (x+a)(y+8) =1’

x+y+z=a, xy+z=10, xy—z=7"
x—y=m(y—3), y+z=u% z+x=0°, x+y=w’
P—yPr=m(y—z), y+z=107 s+x=0 x+y=w’
xz=)% x—a=1', y—a=v' z—a=w

xz=9% x+a=4, y+a=7v z+a=w"
x+a=7, y+a=s, s+a="0,

yzta=1 zx+a=7% xy+a=w'

x—a=7, y—a=s, s—a=">~.

yz—a=4% zx—a=20% xy—a=u'
YE+al=7 S+ =5 P+ P=0

VYR 1y+=1 F+ 2+ =0 Y+t Y =ul
x—2=7 y—2=5 z—2=0,

yE—y—2=10 X —2—X=0, XY—x~y=2",
yi—x=u? sx—y=0"% xy—z=w"

Lemma 1 tov. 7. xy+a%+y =t

% G

Q-
II.

o3 b 0 i o

[P S G W R S

f2gsssses

10.
1z,
i3
14.

21.
22.
23.
24.
25.
26.
27.
28.
30.

xﬂt(x+y+2)={:;}’ y’i(xJ'yH):{:;}’

z’i—,(x+y+z)={:}i},

yorryra={i}, swr@ryra={7),

x_yi(x+_y+z)={:,i}.

(cf. 1. 11.) x+y=1, x+a=w’ y+a=22
X+y+z=1, x+a=4, y+a=0", s+a=uw’
x+y=1, xta=u’ y+b=7~
X+y+z=1, X+a=#, y+b6=0° s+c=ut.
X+y+z=a, y+z=0, 2+x=0% x+y=wt
x+y+z+w=a,

X+y+z=5, y+s+w=0, stw+x=u', w+x+y=1~
B2P2 =0t a4y =0, PP t=wt
2222t — =18, 29?22 -y =07 a2l P=wt
B2 =1, Y-ait=1", -2l =w
Ye+ri=1, PP+ 1=0" 2P+ 1=’
Ye—1=u 20— 1=2% P -1=2"
12 =ut 1-22x=7° 1-xY=uwt
Y+i¥+a=u L+x+a=1 P2 +y*+a=ut
P+f—a=d, 2+x—a=1" FC+y*—-a=w"
mx+ny=2, w+a=(x+y)>.

Lemma 2 to VI 12. ax®+b=1* (where a+b=2%).
Lemma to v, 15,  ax*—4=#' (where ad®—4=¢"is known).
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[v.15). *P+p2+22—3=0
[v. 16]. 3—(P+3*+ %) =2’
[v. 17). 2*+p2+22+3=0’
Indeterminate analysis of the fourth degree.
V. 29. aA+pt+ =l
[v.18) «*+2+22—3=0uh

Problems of constructing right-angled triangles with sides in rational
numbers and satisfying various other conditions.

[N.B. I shall use x, y for the perpendicular sides and z for the
hypotenuse in all cases, so that the condition x®+y*=2* must be under-
stood to apply in every case in addition to the other conditions specified.]

Lemma to V. 7. Xp=2, 3= %;¥;.

VI. 1. z—x=4 z—y="0".
s+ x=0 z+y=17°.
bay +a=1u’
dxy—a=1"
a—Yxy=12’
xp+x=a.
txy—x=a.

Iy +(x+y)=a

L. 9 lxy—(x+p)=a

VL. 10. fay+(x+z)=a.

VI
VI
V1
VI

-

¥
V.

|
{
{
VL lay—(x+r)=a
{
{

H
P S

< <
>

Lemma 1 to VL. 12. x=#% x—y=7% lay+y=1’
L1z jay+x=u, Jayty=o
{VI. 13. lay—x=dd, tay—y=2~
I 14. Fxy—z=10", fay—x=1~
L 15, Jay+s=u, Jay+ X =0t
116 Erg=g, En=ys
L 17. Yaxy+z=1} x+y+s=0"
{VI. 18. Jay+z=4 x+y+z=92%
I
I
1
1
1

<

"

VI.

]

<

<

19. lay+x=ud x+y+z=0~

20. JxXy+x=18, x+y+s=0%

21. x+y+z=ud tay+(x+y+3)=7%
VI 22. X+y+z=25 Jay+(x+y+3)=0%
VL 23. 2= +u, 2lx=0°+0.

VL 24. z=tt+u, x=0"—v, y=u’

[ve 6, 7] (Rx)*+ dmaxy =

[vi. 8,9]. {3 (x+3)}*+ dmay =2

[vi. 10, 11} {3 (z+2)}* + dmay =

[vi. 12]. y+(x-p).3ay=0 x=2* (x>y).
[vi. 14, 15} #ax—ap.x(z—-x)=2" («*<or> fxy).

<

VL



SUPPLEMENT

ADDITIONAL NOTES, THEOREMS AND PROBLEMS BY FERMAT,
TO WHICH ARE ADDED SOME SOLUTIONS BY EULER

I HAVE generally referred to the notes of Fermat, and allied propositions
of his, on the particular problems of Diophantus which were the occasion
of such notes, illustrations or extensions; but there are some cases where
the notes would have been of disproportionate length to give in the places
where they occur. Again, some further explanations and additional
theorems and problems given by Fermat are not in the notes to Diophantus
but elsewhere, namely in his correspondence or in the Doctrinae Analyticae
Inventum Novum of Jacques de Billy “based on various letters sent to
him from time to time by Pierre de Fermat ” and originally included at the
beginning of the 2nd (1670) edition of Bachet’s Diophantus (the /nzentum
Novum is also published, in a free French translation by Tannery, in
Ocuvres de Fermat, Vol. 1. pp. 323-398). Some of these theorems and
problems are not so closely connected with particular problems in Dio-
phantus as to suggest that they should be given as notes in one place
rather than another. In these circumstances it seemed best to collect the
additional matter at the end of the book by way of Supplement.

In the chapter on the Porisms and other assumptions in Diophantus
(pp- 106110 above) I quoted some famous propositions of Fermat on the
subject of numbers which are the sums of two, three or four square numbers
respectively. The first section of this Supplement shall be devoted to
completing, so far as possible, the story of Fermat’s connexion with these
theorems.

SECTION L

ON NUMBERS SEPARABLE INTO INTEGRAL SQUARES.

As already noted, Fermat enunciated, on Diophantus 1v. 29, a very
general theorem of which one part states that Every number is cither a
square or the sum of two, threc or four squares. We shall return to this
later, and shall begin with the case of numbers which are the sum of
two squares.
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1. On numbers whick are the sum of two squares.

1 may repeat the beginning of the note on 111. 19 already quoted (p. 106).

¢« A prime number of the form 47 + 1 is the hypotenuse of a right-angled
triangle in one way only, its square is so in two ways, its cube in three, its
biquadrate in four ways, and so on ad infinitum.

“The same prime number 47 + 1 and its square are the sum of two
squares in one way only, its cube and its biquadrate in two ways, its fifth
and sixth powers in three ways, and so on ad infinitum.

“If a prime number which is the sum of two squares be multiplied into
another prime number which is also the sum of two squares, the product
will be the sum of two squares in two ways ; if the first prime be multiplied
into the square of the second prime, the product will be the sum of two
squares in three ways; if the first prime be multiplied into the cube of the
second, the product will be the sum of two squares in four ways, and so on
ad infinitum.”

Before proceeding further with this remarkable note, it is natural to
ask how Fermat could possibly have proved the general proposition that
(a) Every prime number of the form an+1 is the sum of two square
numbers, which was actually proved by Euler’. Fortunately we have
in this case a clear statement by Fermat himself of the line which his
argument took. In his “ Relation des nouvelles découvertes en la science
des nombres” sent by Fermat to Carcavi and shortly after (14 August,
1659) communicated by the latter to Huygens, Fermat begins by a refer-
ence to his method of proof by indefinite diminution (descente infinie or
indéfinie) and proceeds® thus: “T was a long time before I was able to
apply my method to affirmative questions because the way and manner
of getting at them is much more difficult than that which I employ with
negative theorems. So much so that, when T had to prove that every
prime number of the form 4n + 1 is made up of two squares, 1 found myself
in a pretty fix. But at last a certain reflection many times repeated gave
me the necessary light, and affirmative questions yielded to my method,
with the aid of some new principles by which sheer necessity compelled me
to supplement it. This development of my argument in the case of these
affirmative questions takes the following line: if a prime number of the
form 47 + 1 selected at random is not made up of two squares, there will
exist another prime number of the same sort but less than the given
number, and again a third still smaller and so on, descending ad infinitum,
until you arrive at the number 5 which is the smallest of all numbers of

Y Novi C tarii Academice Petropolit 1752 and 1753, Vol. 1v. (1758),
PP- 3-49, 1754 and 1755, Vol. V. (1760), pp. 3-58=Commentationes arithmeticae
collectae, 1849, 1. pp. 155-173 and pp. 210-233.

2 Ocuvres de Fermat, 11. . 432.
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the kind in question and which the argument would require 207 to be made
up of two squares, although, in fact, it is so made up. From which we
are obliged to infer, by reductio ad absurdum, that all numbers of the kind
in question are in consequence made up of two squares.”

The rest of the note to Diophantus 111. 19 is as follows.

“From this consideration it is easy to deduce a solution of the problem

“ 10 find in how many ways a given number can be the hypotenuse of
a right-angled triangle.

“Take all the primes of the form 47+ 1, e.g. 5, 13, 17, which measure
the given number.

“If powers of these primes measure the given number, set out the
exponents of the powers; eg let the given number be measured by the
cube of 5, the square of 13, and by 17 itself but no other power of 17;
and set out the exponents in order, as 3, 2, 1.

‘“Take now the product of the first of these and twice the second, and
add to the product the sum of the firstand second : this gives 17.  Multiply
this by twice the third exponent and add to the product the sum of 17 and
the third exponent: this gives 52, which is #he number of the different right-
angled triangles which have the given number for hypotenuse. [If a, b, ¢ be
the exponents, the number of the triangles is 4abc + 2 (bc + ca + ab) + a + b +¢.]
We proceed similarly whatever the number of divisors and exponents.

“Other prime factors which are not of the form 47+ 1, and their
powers, do not increase or diminish the number of the right-angled triangles
which have the given hypotenuse.

“PROBLEM 1. 70 find a number whick is a kypotenuse in any assigned
number of ways.

“Let the given number of times be 7. We double 7: this gives 14.
Add 1, which makes 15. Then seek all the prime numbers which measure
it, Ze. 3 and 5. Next subtract 1 from each and bisect the remainders.
This gives 1 and 2. [In explanation of the process it is only necessary to
observe that, for example, 2 {4abc+ 2 (bc+ca+ab)+a+b+ch+1 is equal
to (2a+1)(26+1)(2¢+1), and so on.] Now choose as many prime
numbers of the form 47z + 1 as there are numbers in the result just arrived
at, ie in this case two. Give to these primes the exponents 1, 2 re-
spectively and multiply the results, Ze. take one of the primes and multiply
it into the square of the other.

“It is clear from this that it is easy to find the sma/lest number which
is the hypotenuse of a right-angled triangle in a given number of ways.”

[Fermat illustrates the above further in a letter of 25 December 1640
to Mersenne'.

7o find a number which is the hypotenuse of 367 different right-angled
triangles and no more.

L Qcuvres de Fermat, 11. pp- 214 $q.
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Double the number and add 1 ; this gives 735. Take all the divisors
which are prime numbers : these are 3, 5, 7, 7. Subtract 1 from each and
then divide by 2 ; this gives 1, 2, 3, 3. We have then to take four prime
numbers of the form 47+ 1 and give them 1, 2, 3, 3 respectively as ex-
ponents. The product of these powers is the number required.

To find the least such number, we must take the four /east primes of the
form 4n+1, fe. 5, 13, 17, 29, and we must give the smallest of them,
in order, the largest exponent ; Ze. we must take 5%, 13%, 17% and 29 in this
case, and the product of these four numbers is the least number which is
the hypotenuse of 367 right-angled triangles and no more.

If the double of the given number + 1 is a prime number, then there is
only one possible divisor. Suppose the given number is 20; the double
of it plus 1 is 41. Subtracting unity and bisecting, we have 20, so that the
number to be taken is some prime number of the form 47 + 1 to the power
of 20.]

“PROBLEM 2. 70 find a number whick shall be the sum of two squares
in any assigned number of ways.

“Let the given number be 10. Its double is 20, which, when separated
into its prime factors, is 2.2.5. Subtract 1 from each, leaving 1, 1, 4.
Take three different prime numbers of the form 4z + 1, say s, 13, 17, and
multiply the biquadrate of one (the exponent being 4) by the product
of the other two. The result is the required number.

“By means of this it is easy to find the smallest number which is the
sum of two squares in a given number of ways.

“In order to solve the converse problém,

“ T find in how many ways a given number is the sum of two squares,
“let the given number be 325. The prime factors of the form 4z + 1
contained in this number are 5, 13, the latter being so contained once only,
the former to the second power. Set out the exponents 2, 1. Multiply
them and add to the product the sum of the two: this gives 5. Add 1,
making 6, and take the half of this, namely 3. This is the number of ways
in which 325 is the sum of two squares.

“If there were three exponents, as 2, 2, 1, we should proceed thus.
Take the product of the first two and add it to their sum: this gives 8.
Multiply 8 into the third and add the product to the sum of 8 and the
third: this gives 17. Add 1, making 18, and take half of this or g. This
is the number of ways in which the number taken in this second case is
the sum of two squares. [If @, 4, ¢ be the three exponents, the number
of ways is § {abc+ (bc+ca+ab)+ (a+6b+c)+ 1} provided that the number
represented by this expression is an integer.]

“If the last number which has to be bisected should be odd, we
must subtract 1 and take half the remainder.
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“ But suppose we are next given the foilowing problem to solve:

“Z0 find a whole number whick, when a given number is added to i,
becomes a square, and which is the hypotenuse of any assigned number of
right-angled triangles.

“This is difficult. Suppose eg. that a number has to be found which
is a hypotenuse in two ways and which, when 2 is added to it, becomes
a square.

“The required number will be 2023, and there are an infinite number
of others with the same property, as 3362 etc.”

2. On numbers whick cannot be the sum of two squares.

In his note on Diophantus v. g Fermat took up a remark of Bachet’s
to the effect that he believes it to be impossible to divide 21 into two
squares because “it is neither a square nor by its nature made up of two
squares.” Fermat’s note was: “The number 21 cannot be divided into
two squares (even) in fractions. That I can easily prove. And generally
a number divisible by 3 which is not also divisible by g cannot be divided
into two squares either integral or fractional.”

He discusses the matter more generally in a letter of August 1640
to Roberval'.

“I have made a discovery & propos of the 1zth [gth] proposition of
the fifth Book of Diophantus (that on which I have supplied what Bachet
confesses that he did not know and at the same time restored the corrupted
text, a story too long to develop here). I need only enunciate to you my
theorem, while reminding you that I proved some time ago that

““A number of the form gn— 1 is neither a squarce nor the sum of two
squares, either in integers or fractions.”

[This proposition was sent by Mersenne to Descartes, on 22 March
1638, as having been proved by Fermat.]

“ For the time I rested there, although there are many numbers of the
form 47 + 1 which are not squares or the sums of squares either, ¢.g. 21,
33, 77, etc., a fact which made Bachet say on the proposed division of 21
into two squares ‘It is, I believe, impossible since 21 is neither a square
nor by its nature made up of two squares,” where the word reor (I think)
clearly shows that he was not aware of the proof of the impossibility.
This 1 have at last discovered and comprehended in the following general
proposition.

“If a given number is divided by the greatest square which measures it,
and the quotient is measured by a prime number of the form 4n — 1, the grven
number is neither a square nor the sum of two squares cither integral or
Sractional.

1 Ocwvres de Fermat, 11. pp. 203~4.
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“ExaMPLE. Let the given number be 84. The greatest square which
measures it is 4, and the quotient is 21 which is measured by 3 or by
7, both 3 and 7 being of the form 47— 1. T say that 84 is neither a square
nor the sum of two squares either integral or fractional.

“Let the given number be 77. ‘The greatest square which measures it
is 1, and the quotient is 77 which is here the same as the given number
and is measured by 11 or by 7, each of these numbers being of the form
4n—1. 1 say that 77 is neither a square nor the sum of two squares,
either in integers or fractions.

“T confess to you frankly that I have found nothing in the theory of
numbers which has pleased me so much as the proof of this proposition,
and I shall be glad if you will try to discover it, if only for the purpose
of showing me whether I think more of my discovery than it deserves.

“Following on this I have proved the following proposition, which
is of assistance in the finding of prime numbers.

“If a number is the sum of two squares prime to one another, I say
thal it cannot be divided by any prime number of the form gn— 1.

“For example, add 1, if you will, to an even square, say the square
10 000 000 000, making 10 cooooooo1. I say that 10000 005 cor cannot
be divided by any prime number of the form 47— 1, and accordingly,
when you would try whether it is a prime number, you need not divide by
&3 Gy o SR

(The theorem that Numbers which are the sum of two squares prime to
one another have no divisors except such as are likewise the sum of two squares
was proved by Euler'.)

3. Numbers (1) which are always, (2) which can never be, the sum
of three squares.

(1)  The number which is double of any prime number of the form
8n— 1 is the sum of three squares (Letter to Kenelm Digby of June 1658)*

E.g. the numbers 7, 23, 31, 47 etc. are primes of the form 8z—1; the
doubles are 14, 46, 62, 94 etc.; and the latter numbers are the sums of
three squares.

Fermat adds “1 assert that this proposition is true, though I do so in
the manner of Conon, an Archimedes not having yet arisen to assert it
or prove it.”

Lagrange® remarks that he has not yet been able to prove the pro-
position completely. The form 87 — 1 reduces to one or other of the three

Y Novi Commentarii Acad. Petropol. 1752 and 1753, Vol. 1v. (1758), pp. 3—40=
Commentationes arithmelicae, 1. pp. 155-173.

2 Qcuvres de Fermat, 11. pp. 402 sqq.

3 «“Recherches d’Arithmétique” in Berlin Mémoires 1773 and 1775=Oecuvres de
Lagrange, 111. p. 795.
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forms 2472 —1, 247 + 7, 247 + 15, of which the first two only are primes.

Lagrange had previously proved that every prime number of the form

247 + 7 is of the form x*+6y% The double of this is zx? + 125% and
227+ 129 = (% + 2p)° + (% — 2)* + (29)?,

that is, 24? + 12y* is the sum of three squares.

The theorem was thus proved for prime numbers of the form 87 — 1,
wherever # is not a multiple of 3, but not for prime numbers of the form
247 — 1.

Legendre’, however, has the theorem that Every number which is the
double of an odd number is the sum of three squares.

(2) No number of the form 24n+7 or 4™ (24n+7) can be the sum
of three squares.

This theorem is substantially stated in Fermat’s note on Dioph. v. 11.
We may, as a matter of fact, substitute for the forms which he gives the
forms 8z + 7 and 4™ (82 + 7) respectively.

Legendre? proved that numbers of the form 87+ 7 are the onfy odd
numbers which are not the sum of three squares.

4. Ewvery number is either a square or the sum of two, three or
Jour squares.

This theorem is also mentioned in the “Relation des nouvelles dé-
couvertes en la science des nombres” already quoted, as ‘a case to which
Fermat ultimately found himself able to apply the method of proof by
descente. He says® that there are some other problems which require new
principles in order to enable the method of descente to be applied, and the
discovery of such new principles is sometimes so difficult that they cannot
be arrived at except after very great trouble.

“Such is the following question which Bachet on Dlophantus admits
that he could never prove, and as to which Descartes in one of his letters
makes the same statement, going so far as to admit that he regards it as
so difficult that he does not see any means of solving it.

« Every number is a square or the sum of two, three or four squares.

“I have at last brought this under my method, and I prove that, if
a given number were not of this nature, there would exist a number smaller
than it which would not be so either, and again a third number smaller
than the second, etc. ad infinitum ; whence we infer that all numbers are
of the nature indicated.”

In another place (letter to Pascal of 25 September, 1654)* after quoting
the more general proposition, including the above, that every number is
! Legendre, Zaklentheorie, tr. Maser, 1. p. 387.

2 Jbid. p. 386.
3 Qeuvres de Fermat, 11. p, 433.
4 lbid. p. 313.
18
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made up (1) of one, two, or three triangles, (2) of one, two, three or four
squares, (3) of one, two, three, four or five pentagons, and so on ad infinitum,
Fermat adds that “to arrive at this it is necessary—

(1) To prove that every prime number of the form an+1 is the sum
of two squares, e.g. 5, 13, 17, 29, 37, €lc.;

(2) Given a prime number of the form 47+ 1, as 53, to find, by a
general rule, the two squares of which it is the sum.

(3) ZEwvery prime number of the form 3n+1 is of the form x*+ 35",
eg. 7, 13, 19, 31, 37, €lc.

(4) Every prime number of the form 8n+ 1 or 8n+ 3 is of the form
22+ 292 eg 11, 17, 19, 41, 43, el

(5) There is no rational right-angled triangle in whole numbers the
area of whick is a square.

“This will lead to the discovery of many propositions which Bachet
admits to have been unknown to him and which are wanting in Diophantus.

“I am persuaded that, when you have become acquainted with my
method of proof in this kind of proposition, you will think it beautiful, and
it will enable you to make many new discoveries, for it is necessary, as you
know, that multi pertranseant ut augeatur scientia [Bacon).”

Propositions (3) and (4) will be mentioned again, and a full account
will be given in Section 111. of this Supplement of Fermat’s method, or
methods, of proving (5).

The main theorem now in question that every integral number is the
sum of four or fewer squares was attacked by Euler in the paper? (1754~
1755) in which he finally proved the proposition (1) above about primes
of the form 47 + 1; but, though he obtained important results, he did not
then succeed in completing the proof. Lagrange followed up Euler's
results and finally established the proposition in 1770% Euler returned
to the subject in 1772 ; he found Lagrange’s proof long and difficult, and
set himself to simplify it?.

(The rest of the more general theorem of Fermat quoted above, the
portion of it, that is, which relates to numbers as the sum of » or fewer
n-gonal numbers, was proved by Cauchy*.)

1 Novi Commentarii Acad. Petropol. for 1754~5, Vol. V. (1760), pp. 3-58= Com-
mentationes arithmeticae collectae, 1849, 1. pp. 210-233.

2 Nouveaux Mémoires de I’ Acad. Roy. des Sciences de Berlin, année 1770, Berlin 1772,
Pp. 123-133=Oeuvres de Lagrange, 111, pp. 187-201: cf. Wertheim’s account in his
Diophantus, pp. 324-330.

3 “ Novae demonstrationes circa resolutionem numerorum in quadrata,” dcfa Erudit,
Lips. 1773, p- 1935 Acta Petrop. 1. 11. 1775, p. 48; Comment. arithm. 1. pp. 538-548.

4 Cauchy, “ Démonstration du théoréme général de Fermat sur les nombres polygones,”

Oeuvres, 11° Série, Vol. VI. pp. 320-353. See also Legendre, Zahklentheorie, tr. Maser,
I1. pp- 332-343-
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Under this heading may be added the further proposition that

“ Any number whatever of the form 8n — 1 can only be represented as the
sum of four squares, not only in integers (as others may have seen) dut.in
Jractions also, as 1 promise that I will prove®.”

5. On numbers of the forms x*+2y° &+ 33% 2+ 537 respectively.

(1) Every prime number of the form 8n+1 or 8n+3 is of the form
a4+ 297

This is one of the theorems enunciated in the letter of 25 Sept., 1654,
to Pascal® and also in the letter of June, 1658, to Kenelm Digby=.

[In a paper of 1754 Euler says that he does not yet see his way to
prove either part of the theorem® In 1759 he says® he can prove the
truth of the theorem for a prime number of the form 8z + 1, but not for
a prime of the form 8z+3. Later, however, he proved it for prime
numbers of both forms®. Lagrange” also proved it for primes of the form
8n+3.)

(2) Every prime number of the form 3n+ 1 is of the form x* + 35~

The theorem is stated in the same two letters to Pascal and Digby
respectively.

Lagrange naturally quotes it as * All prime numbers of the form 67 + 1
are of the form &% + 33%” for of course 37 + 1 is not a prime number unless
7 is even.

The proposition was proved by Euler®. Lagrange proved® (@) that all
prime numbers of the form 127 — 5 are of the form a*+ 33% (4) that all
prime numbers of the form 127—1 are of the form 3x*—3?% and (¢) that
all prime numbers of the form 12z + 1 are of o4 the forms x*+ 3y* and
x*— 3%

(3) No number of the form 3n—1 can be of the form x*+3y°

In the “Relation des nouvelles découvertes en la science des nombre
Fermat says that this was one of the negative propositions which he proved
by his method of descente.

g10”

1 Letter to Mersenne of Sept. or Oct. 1636, Ocuwvres de Fermat, 11. p. 66.

2 Qeuvres de Fermat, 11. p. 313.

3 [bid. 11. p. 403.

4 «Specimen de usu observationum in mathesi pura (De numeris formae 2aa +46) ?in
Nowi Commentarii Acad. Petrop. 1756-7, Vol. V1. (1761), pp. 185-230=Comment.
arithm. 1. pp. 174-192.

5 Novi Commentarii Acad. Petrop. 1760-1, Vol. Viil. (1763), pp. 126-8=Comment.
arithm. 1. p. 296.

L fones arithmeticac, 11. p. 607.

7 s Recherches d’Arithmétique ” in Oewvres de Lagrange, 111. pp. 776, 784

8 « Supplementum quorundam theorematum arithmeticorum, quae in nonnullis de-
monstrationibus supponuntur (De numeris formae aa+ 366)” in Novi Comment. Acad.
Petrop. 1760-1, Vol. VIIL. (1763), pp- 105-128 = Comment. arithm. 1. pp. 287-2¢6.

9 Op. cit., Ocuvres de Lagrange, 11. pp. 784, 791.

¥ Ocuvres de Fermat, 11. p. 431.

18—2
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(4) Zf two prime numbers ending in either 3 or 7 which are also of the
Jorm 4n + 3 are multiplied together, the product is of the form x* + 55

This theorem also is enunciated in the letter of June, 1658, to Kenelm
Digby. Fermat instances 3, 7, 23, 43, 47, 67 etc. as numbers of the kind
indicated. Take, he says, two of these, e.g. 7 and 23. The product 161
will be the sum of a square and 5 times another square, namely 81 + 5. 16.

He admits, however, that he has not yet proved the theorem generally:
«T assert that this theorem is true generally, and I am only waiting for
a proof of it. Moreover the square of each of the said numbers is the sum of
a square and 5 times another square: this, too, I should like to see proved.”

Lagrange proved this theorem also’ He observes that the numbers
described are either of the form 207+ 3 or of the form 207+ 7, and he
proves that all prime numbers of these forms are necessarily of the form
2x’+ 2xy + 35°>. He has then only to prove that the product of two
numbers of the latter form is of the form x*+ 53%

This is easy, for

(2% + 2209 + 3% (222 + 247y + 39'2) = (225" + " + ' + 3392 + 5 () —ya'

6.  Numbers of the forms x*—2y* and 2x° *}'2:

Fermat’s way of expressing the fact that a number is of one of these
forms is to say that it is the sum of| or the difference between, the two smaller
sides, 7.e. the perpendicular sides, of a right-angled triangle. Like Diophantus,
he “forms” a rational right-angled triangle from two numbers x, y, taking
as the three sides the numbers &2 + 3%, % —3? 2y respectively. The sum
therefore of the perpendicular sides is #® + 2xy —* or (x + ) — 2)% and
their difference is either x?—2xy—32 or 2xy —(x*—3?), that is, either
(®=yP-2* or 2~ (x—p)t

The main theorem on the subject of numbers of these forms is, as
a matter of fact, contained, not in a letter of Fermat’s, but in two letters
of Frénicle to Fermat dated 2nd August and 6th Sept., 1641, respectively?
It is, however, clear (cf. the letter in which Fermat had on 15th June, 1641,
propounded to Frénicle a problem on such numbers) that the theorem was
at any rate cornmon property between the two.

Frénicle’s two statements of the theorem are as follows :

“Every prime number of the form 87 + 1 is the sum of the two smaller
sides of a (right-angled) triangle, and every number which is the sum of the
two smaller sides of a (right-angled) triangle with sides prime to one another
is of the form 87 + 1.”

“Every prime number of the form 8z + 1, or which is the product
of such prime numbers exclusively, is the difference between the two
smaller sides of an infinite number of primitive right-angled triangles.”

1 Op. cit., Oeuvres de Lagrange, 11. pp. 784, 788-9.
2 Qewwvres de Fermat, 11. pp. 231, 235.
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Lagrange! quotes the theorem in the form

Al prime numbers of the form 8n+ 1 are of the form y* — 21%,

Lagrange himself proves? that all prime numbers of the form 87 — 1 are
of bot/ the forms x* — 2y* and 2a* — »*, and observes® that this theorem is more
genera] than that of Fermat so far as prime numbers of the form 87— 1 are
concerned. This, however, seems scarcely correct if the further explanations
given by Frénicle are taken into account. For Frénicle shows clearly,
in the second of the two letters referred tof, that he was fully alive to
the fact that numbers which are of the form a?— 25* are also of the form
2% — »*; and indeed it is obvious that he was aware that

2~ 29%=2(x + ¥ — (x + 29)%

Lagrange proved in addition® that

Every prime number of the form 8n + 1 is at the same time of the three
Sorms x*+ 298, & — 29 22— )R

This is, I think, really included in Frénicle’s statements when combined
with Fermat’s theorem (1) above to the effect that every prime number
of the form 8z + 1 is of the form x®+ 292

The problem propounded by Fermat to Frénicle in connexion with the
numbers now under consideration was:—

Given a number, to find in how many ways it can be the sum of the two
smaller sides of a right-angled triangle.

Frénicle replied that this involved also the problem of finding a number
which will be the sum of the two smaller sides of a right-angled triangle in
an assigned number of ways and no more, and tried, but unsuccessfully®,
to bring these problems under a rule corresponding to that by which
Fermat found the number of ways in which a prime number of the form
47+ 1 can be the hypotenuse of a right-angled triangle (see p. 269 above),
but with a prime number of the form 8z + 1 substituted for the prime
number of the form 47 + 1. I cannot find that Fermat ever communicated
his own solution, at all events in the correspondence which we possess.

SECTION IL

EQUATION x*— Ay’=1.

History of the equation up to Fermat’s time.

Fermat was not the first to propound, or even to discover a general
method of solving, the problem of finding any number of integral values of
x, y satisfying the above equation, wherein A4 is any integral number not
a square. But Fermat rediscovered the problem and was perhaps the first

1 Qp. cit., Oeuvres de Lagrange, 111. p. 775. 2 Ibid. p. 784- 3 Ibid. p. 788.

4 Qeuvres de Fermat, 11. pp. 235-240.

5 Op. cit., Oeuvres de Lagrange, 111. p. 790.

8 See Ocuvres de Fermai, 11. pp. 231, 238 sqq.
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to assert that the general solution is always possible whatever be the
(non-square) value of 4. The equation has a history of over 2000 years,
and that history, even in outline, requires, as it has now obtained, a book
to itself’. This note will therefore be confined, practically, to recalling, in
the briefest possible way, the recorded stages anterior to Fermat, and then
to setting out somewhat fully the passages in Fermat’s writings which throw
the most light on his connexion with the subject.
The Pythagoreans.

We have seen (p. 117 above) that the Pythagoreans had already
discovered a general solution of a particular equation of this type, namely
2=y =11,
by which all the successive values of x, y satisfying the equation were
ascertained. If x=p, y=g satisfies the equation 2x* — y* = + 1, they proved

that the equation 2x®— y*=7F 1 is satisfied by

h=p+g =20+
the equation 2a?—3*=+ 1 again by
Lr=ptqy fa=20t+ 4,
and so on. As p=1, ¢=1 satisfies 2x°—3*=+ 1, we have all the suc-
cessive solutions of 2a?— 32 =+ 1 by forming (41, 1), ( #1, ¢2) etc. in accord-
ance with the law.

Archimedes.

‘The solution of the above equation by the Pythagoreans was evidently
used in order to obtain successive approximations to ,/z.

Consequently, when we find Archimedes giving, without explanation, the
fractions 8% and 351 as being approximately equal to /3, the hypothesis of
Zeuthen and Tannery that he arrived at these approximations by obtaining
successive solutions of equations of a similar form, but with 3 substituted
for 2, is one of the most natural that have been suggested’. The equations
are in this case

al-3y=1,

x?—3y'=-2.
Tannery shows how the law for forming successive solutions of such
simple cases as these can easily be found when we have found by trial
(which is not difficult) the three simplest solutions. If we take the more

general equation
L-af=r7,

1 H. Konen, Geschichle der Gleichung ¢2 - Du=1, Leipzig (S. Hirzel), 1go1.

2 Zeuthen, “ Nogle hypotheser om Arkhimedes kvadratrodsberegning,” 77dsskrift for
Mathematik, V1. Raekke, 3. Aargang, pp. 150 sqq.; P. Tannery, “Sur la mesure du cercle
&’ Archimede ” in Mémoires de la soc. des sciences phys. et nat. de Bordeauz, 11 Sér. 1v.,
1882, p. 303; see Giinther, ¢ Die quadratischen Irrationalititen der Alten und deren
Entwickelungsmethoden” in Abkandlungen zur Gesch. der Mathematik, Heft 1v. 1882,
pp- 87-91; Konen, op. ci?. p. 15.
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of which x =, y= ¢ is a known solution, and put

bH=ap+Bg, q=yp+3,
it is sufficient to know the three simplest solutions in order to find «, S, v
8; for, substituting the values of (g, g), (21, 1) and (ps, ) where (£, ¢5)
are formed from (2y, ¢;) by the same law as (,, ¢,) are formed from (2, 7)s
we bave four simultaneous equations in four unknown quantities. Taking
the particular equation
x*—3)0=1,

we easily find the first three solutions, namely (p=1, g = o), (=2, q=1)
and (=17, ¢, = 4), whence

2=a, I=‘y,
7=2a+f0, 4=2y+39,
anda=2, B=3, y=1, §=2, so that

’=20+39, h=p+2g.
But there is evidence that Archimedes dealt with much more difficult
equations of the type, for (as stated above, p. 123) the Cattle-Problem
attributed to him requires us to solve in positive integers the equation

%'~ 4729494y = 1.

There is this difference between this equation and the simpler ones
above that, while the first solutions of the latter can be found by trial,
the simplest solution of this equation cannot, so that some general method,
e.g. that of continued fractions, is necessary to find even the least solution
in integers. Whether Archimedes was actually able to solve this particular
equation is a question on which there is difference of opinion; Tannery
thought it not impossible, but, as the smallest values of x, y satisfying the
equation have 46 and 41 digits respectively, we may, with Giinther, feel
doubt on the subject'. There is, however, nothing impossible in the
supposition that Archimedes was in possession of a general method of
solving such equations where the numbers involved were not too great for
manipulation in the Greek numeral notation.

Diophantus.
Tannery? was of opinion that Diophantus dealt with the equation
xr—Ayi=1
somewhere in the lost Books of the Arithmetica. Diophantus does indeed
say (Lemma to v1. 15) that, if @, & are any numbers and ax®— 4 is a square
when « is given a certain value g, then other values of «x greater than p can
also be found which have the same property ; and Tannery points out that

'
! Giinther, gp. cét., pp. 92-93 note. Cf. Konen, 0p. cit., p. 14.
2 Tannery, ‘‘L’Arithmétique des Grecs dans Pappus” in Mmoires de la soc. des
sciences phys. ¢t nat. de Bordeaux, 11° Sér. 111., 1880, pp. 370 sq.
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we can, by making suppositions of the same kind as Diophantus makes,
deduce a more general solution of the equation

= Ayi=1
when one solution (2, ¢) is known.
Put H=mx—p, q=%x+gq,

and suppose
P2 = Ag=mix® — empx + P — Ax® — 2Agx — Agi=1;
therefore (since #* — Ag*= 1)
o mp + Ag
= e

and, by substitution in the expressions for p,, ¢,, we have
(m +A)p+2Amg z”z;ﬁ+(nﬁ+A)g
m®— A4 = m?— A
and in fact ,® — 4¢?=1.
If an integral solution is wanted, one way of obtaining it is to substitute
ufv for m where u®~ A2*=1, ie where », v is another solution of the
original equation, and we then have

=+ AV p+ 2Auvg, ¢,=2puv + (1 + AP q.

But this is all that we can get out of Diophantus as we have him, and
it will be observed that here too we must have ascertained two solutions of
the one equation, or one solution of it and a solution of an auxiliary equation,
before we can apply the method™

! It may be observed that, in the particular case of the equation x2—3y2=1, the
assumption of #, » satisfying the equation will not enable us to obtain from the formula

K=+ AR p+24uvg, q=12puv+ 12+ AdvY)g
above given the simpler formula otherwise obtained by Tannery (p. 279 above), namely
H=2p+3¢, Q1=p+2¢;
for, if (#1, ¢1) is to be a different solution from (£, g), we cannot make #=1, =0, but
must take =2, v=1, whence, putting 4 =3, we obtain
H=1p+12, q1=42t79,
which is the same as g3, ¢3, the next solution to gy =22+ 3¢, g1=2+2¢.
In order to get the latter we have to take #, 2 satisfying, not x2—332=1, but
-3i=-2.
The values #=1, v=1 satisfy x2 - 32= — 2, and
(et 3v2)1ﬁ+6=wq 4P+69

Sapt = —(2p+3¢),
'mwp+(u3+ 31}2)g 2p+4g_ :
n= PPy T (p+29);

and of course gy = +(28+3¢), y1= +(2+2¢) can be taken, since they equally satisfy
plﬂ -3912=1.
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The Indian Solution.

If the Greeks did not accomplish the general solution of our equation,
it is all the more extraordinary that we should have such a.general solution
in practical use among the Indians as early as the time of Brahmagupta
(born 598 A.p.) under the name of the “cyclic method.” Whether this
method was evolved by the Indians themselves, or was due to Greek
influence and inspiration, is disputed. Hankel held the former view!;
Tannery held the latter and showed how, from the Greek manner of
deducing from one approximation to a surd a nearer approximation, it is
possible, by simple steps, to pass to the Indian method% The question
presumably cannot be finally decided unless by the discovery of fresh
documents; but, so far as the other cases of solution of indeterminate
equations by the Indians help to suggest a presumption on the subject,
they are, I think, rather in favour of the hypothesis of ultimate Greek
origin. Thus the solution of the equation ax — 4y =¢ given by Aryabhata
(born 476 A.D.) as well as by Brahmagupta and Bhaskara, though it
anticipated Bachet’s solution which is really equivalent to our method of
solution by continued fractions, is an easy development from Euclid’s
method of finding the greatest common measure or proving by that process
that two numbers have no common factor (Eucl. viL 1, 2, X. 2, 3)% and
it would be strange if the Greeks had not taken this step. The Indian
solution of the equation xy = ax + &y + ¢, by the geometrical form in which
it was clothed, suggests Greek origin*.

The “cyclic method ” of solving the equation
2—Ady=1

is found in Brahmagupta and Bhaskara® (born 1114 A.D.) and is well
described by Hankel, Cantor and Konen®.

The method is given in the form of dogmatic rules, without any proof
of the assumptions made, but is equivalent to a preliminary lemma followed
by the solution proper.

1 Hankel, Zur Geschichle der Math. im Alterthum und Mittelalter, pp. 203—4-

2 Tannery, ““Sur la mesure du cercle d’Archimeéde” in Mém. de la soc. des sciences
phys. ¢ nat. de Bordeaux, 11° Sér. 1v., 1882, p. 325; cf. Konen, pP- 27-28; Zeuthen,
“L’Oeuvre de Paul Tannery comme historien des mathématiques” in Bibliotheca Mathe-
matica, Vig, 1905-6, pp. 271-273-

3 G. R. Kaye, ““Notes on Indian mathematics, No. 2, Aryabhata " in _Journal of the
Asiatic Society of Bengal, Vol. 1v. No. 3, 1908, pp. 135-138.

4 Cf. the description of the solution in Hankel, p. 199; Cantor, Gz::/: d. Math. 13,

631.

. 5 The mathematical chapters in the works of these writers containing the solution in
question are contained in H. T. Colebrooke’s dlgebra with arithmetic and mensuration
from the Sanskrit of Brakmegupta and Bhaskara, London, 1817.

6.Hankel, pp. 200-203; Cantor, I, pp. 632-633; Konen, op. cit., pp. 19-16.
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Lemma.
If x=p, y=¢ be a solution of the equation
AP+ 5=
and x =4, y=¢ a solution of the equation
Ay +5' =,
then, say the Indians, x = pp' + 4gq', y =p4' + '¢ is a solution of the equation
Ay +ss'=a" ;
In other words, if
AP +s =p°
Ay + 5 = p”} £
then A(27 +09) + 55 = (2 + Aggy.

This is easily. verified'.
In particular, taking s=s', we find, from any solution x=p, y=¢ of
the equation
AP +s=a,
a solution x = + 4g% y=2p¢ of the equation
' Ay + =22
Again, particular use of the lemma can be made when s=+1 or s=+ 2.
(@) Ifs=+1,and x=p, y=g is a solution of
AP+ =2,
then x = 2* + Ag% y = 2p¢ is another solution of the same equation.
If s=—1,and x =2, y=g¢ is a solution of

Ay —1=4°
then x = #? + Ag% y = 2p¢ is a solution of
Ay + 1= a2
(#) Ifs=#2,and x=p, y=g¢is a solution of
Ayt z=a,
then x=p* + 4¢%, y=2pg is a solution of
Ay + 4 =2

In this case, since 2pg is even, the whole result when the values of
x, y are substituted must be divisible by 4, and we have x =} (#* + 4¢%),
y = pq as a solution of the equation
AP+ 1=a2

! For, since s=p2— Ag?, s'=p2— 442,
5=~ 4gY (47~ g
=(p0)2+(4gq)2 - A (292 - 4 (9P
={(20)2 £ 242809’ +(Agg )} — 4 {29 = 200 99 + ($'9)?}
=(pp' =497~ A (29 79"
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Solution proper of the equation x*— Ay*= 1.

We take two numbers prime to one another, , ¢, and a third number s
with no square factor, such that

Agﬁ +s =P2:
the numbers being also chosen (in order to abbreviate the solution) such
that s is as small as possible, though this is not absolutely necessary.
(This is a purely empirical matter; we have only to take a rough ap-
proximation to /A4 in the form of a fraction p/g.)

[It follows that s, ¢ can have no common factor; for, if § were a
common factor of s, ¢, it would also be a factor of 2% and #% ¢* would have
a common factor. But p, ¢ are prime to one another.]

Now find a number # such that

= i;’%yi’ is a2 whole number.
[This would be done by the Indian method called cuttaca (“ pulveriser ),
corresponding to our method by continued fractions.]
Of the possible values of # a value is taken which will make »* -4
as small as possible.
Now, say the Indians, we shall have :

=gt is an integral number,
e 2
and Ag? + 5= (Iﬁ—%‘y“‘l) ="

(Again the proofs are not given; they are however supplied by Hankel'.)

1 Since ql=p tqr is an integral number, all the letters in g¢js=p+g» represent
integers.
Further, s=p2- Ag%;

therefore, eliminating s, we have
a{P-Ag”)=p+er
oz 2(pp~1)=¢r+Agqn).
Since g, ¢ have no common factor, ¢ must divide gg; — 15 that is,
2=
q
We have next to prove that sy = (72— 4)/s is an integer.

=an integer.

— A2 A2 22
Now rz—A=(71x p;? b ;fﬁH':, since s=p2- Ag?;
25
therefore J-(q—li—’zi—pm is an integer,

7
and, since s, ¢ have no common factor, it follows that
as—2pn+1 P-4
¢ s
=r2— A =5Ll2:— 2501+ 1 =q12(p3—Aq7) -t P — 1)2_‘4’“2.
s 7 7 V;

is an integer.

Also St



284 SUPPLEMENT

We have therefore satisfied a new equation of the same form as that
originally taken'.

We proceed in this way, obtaining fresh results of this kind, until we
arrive at one in which s =+ 1 or + 2 or + 4, when, by means of the lemma,
we obtain a solution of

Ay’ + 1=a%

Example. To solve the equation 67y* + 1 = &2

Since 8?%is the nearest square to 67, we take as our first auxiliary equation
67.1°-~3=8%sothat p=8 g=1,5s=—3.

Thus qlz—s 7 we put 7 =7, which makes ¢, an integer and at the
2 -_—
same time makes 5, = — 7—3 o =6 as small as possible.
Thus G==% 1= (pm=1lg=-41,

and we have satisfied the new equation
67.5%+6=41%

Next we take g,=4i;75§,_ and we put 7,=35, giving ¢, =11; thus
)
5= 6 72_77 and g, = (¢ — I)/91=9°7 and
6% .(11)*—7=090%
Next ¢, =—9L7“{s, and we put 7, =09, giving ¢; =— 27 ; therefore
75 —6 —Qo0.27—1
S3= 3_7 ity p,=i—;L=—221, and

67.(27) — 2=(221)"
As we have now brought our s down to 2, we can use the lemma, and
67(2.27.221)%+ 4= (2212 + 67 . 27%),
or 67 (11934)* + 4 = (97684)*;
therefore, dividing by 4, we have
67(5967)*+ 1 =(48842)"

Of this Indian method Hankel says, “It is above all praise; it is

certainly the finest thing which was achieved in the theory of numbers

1 Hankel conjectures that the Indian method may have been evolved somewhat in
this way.
If 4g2+s=p2 is given, and if we put 4g'2+s" =2, then
A(pg 29 +ss'=(pp'~ Agq')*
Now suppose #/, ¢’ to be determined as whole numbers from the equation gy’ - p'g=1,
and let the resulting integral value of gp’~ 4gg’ be 7.
Then 4+ 55 =72 and accordingly »2- .4 must be divisible by s, or s'=(4 -#3)/s is
a whole number.
Eliminating #’ from the two equations in ', ¢, we obtain
¢'=(2+gr (P2 - Ag")=(p+g7)ls,
and, as stated in the rule, 7 has therefore to be so chosen that (p+gr)/s is an iuteger.
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before Lagrange” ; and, although this may seem an exaggeration when we
think of the extraordinary achievements of a Fermat, it is true that the
Indian method is, remarkably enough, the same as that which was redis-
covered and expounded by Lagrange in his memoir of 1768 Nothing is
wanting to the cyclic method except the proof that it will in every case
lead to the desired result whenever 4 is a number which is not a square ;
and it was this proof which Lagrange first supplied.

Fermat.

As we have already said, Fermat rediscovered our problem and was

the first to assert that the equation

—-Ay=1,
where A is any integer nat a square, always has an unlimited number
of solutions in integers.

His statement was made in a letter to Frénicle of February, 1657%
Fermat asks Frénicle for a general rule for finding, when any number not a
square is given, squares which, when they are respectively multiplied by the
given number and unity is added fo the product, give squares. If, says
Fermat, Frénicle cannot give a general rule, will he give the smallest value
of y which will satisfy the equations 613*+ 1 = x* and 109*+ 1 = a??*

At the same time Fermat issued a challenge to the same effect to
mathematicians in general, prefacing it by some remarks which are worth
quoting in full*,

“There is hardly any one who propounds purely arithmetical questions,
hardly any one who understands them. Is this due to the fact that up to
now arithmetic has been treated geometrically rather than arithmetically?
This has indeed generally been the case both in ancient and modern
works ; even Diophantus is an instance. For, although he has freed
himself from geometry a little more than others have in that he confines
his analysis to the consideration of rational numbers, yet even there
geometry is not entirely absent, as is sufficiently proved by the Zefetica
of Vieta, where the method of Diophantus is extended to continuous
magnitude and therefore to geometry.

“Now arithmetic has, so to speak, a special domain of its own, the
theory of integral numbers. This was only lightly touched upon by Euclid
in his Elements, and was not sufficiently studied by those who followed
him (unless, perchance, it is contained in those Books of Diophantus of

1 «“Sur la solution des problémes indéterminés du second degré” in Mmoires de
P Acad. Royale des Sciences et Belles-Lettres de Berlin, t. XX11L 1769 (= Ocuvres de
Lagrange, 11. pp. 377 5qq-)- The comparison between Lagrange’s procedure and the
Indian is given by Konen, pp. 75-77-

2 Qeuvres de Fermat, 11. pp. 333—4- o

3 Fermat evidently chose these cases for their difficulty ; the smallest values satllsfytng
the first equation are y=226153980, x=1766319049, and the smallest values satisfying
the second are y=15140424435100, x=158070671986249.

4 Oeuvres de Fermat, 11. pp. 334-5-
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which the ravages of time have robbed us); arithmeticians have therefore
now to develop it or restore it.

“To arithmeticians therefore, by way of lighting up the road to be
followed, I propose the following theorem to be proved or problem to
be solved. If they succeed in discovering the proof or solution, they will
admit that questions of this kind are not inferior to the more celebrated
questions in geometry in respect of beauty, difficulty or method of proof.

“ Given any number whatever which is not a square, there are also given
an infinite number of squares such that, if the square is multiplied into the
given number and unity is added to the product, the result is a square.

“Example. Let 3, which is not a square, be the given number; when
it is multiplied into the square 1, and 1 is added to the product, the result
is 4, being a square.

“The same 3 multiplied by the square 16 gives a product which, if
increased by 1, becomes 49, a square.

“And an infinite number of squares besides 1 and 16 can be found
which have the same property.

“But I ask for a general rule of solution when any number not a square
is given.

“ E.g. let it be required to find a square such that, if the product of the
square and the number 149, or 109, or 433 etc. be increased by 1, the
result is a square.”

The challenge was taken up in England by William, Viscount Brouncker,
first President of the Royal Society, and Wallis’. At first, owing apparently
to some misunderstanding, they thought that only rational, and not neces-
sarily integral, solutions were wanted, and found of course no difficulty in
solving this easy problem. Fermat was, naturally, not satisfied with this
solution, and Brouncker, attacking the problem again, finally succeeded in
solving it. The method is set out in letters of Wallis? of 17th December,
1657, and 3oth January, 1658, and in Chapter xcvii of Wallis’ d/gebra ;
Euler also explains it fully in his 4/gebra®, wrongly attributing it to Pell*.

! An excellent summary of the whole story is given in Wertheim’s paper ¢ Pierre
Fermat’s Streit mit John Wallis” in Abdkandlungen zur Gesch. der Math. 1x. Heft
(Cantor-Festschrift), 1899, pp. 557-576. See also Konen, pp. 29-43.

? Qeuvres de Fermat, 111. pp. 457480, 490-503. Wallis gives the solution of each
of the three difficult cases last mentioned.

3 Euler, 4lgebra, Part 11. chap. ViI.

4 This was the origin of the erroneous description of our equation as the *‘ Pellian”
equation. Hankel {p. 203) supposed that the equation was so called because the solution
was reproduced by Pell in an English translation (1668) by Thomas Brancker of Rahn’s
Algebra; but this is a misapprehension, as the so-called ‘“ Pellian” equation is not so
much as mentioned in Pell’s additions (Wertheim in Bibliotheca Mathematica, 1113,
1902, pp. 124~6; Konen, pp. 33—4 note). The attribution of the solution to Pell was a
pure mistake of Euler’s, probably due to a cursory reading by him of the second volume
of Wallis’ Opera where the solution of the equation ax?+ 1 =32 is given as well as informa-
tion as to Pell’s work in indeterminate analysis. But Pell is not mentioned in connexion
with the equation at all (Enestrém in Bibliotheca Mathematica, 1113, 1902, p. 206).
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Fermat appears to have been satisfied with the actual so/ufion', but
later he points out that, although Frénicle and Wallis had given many
particular solutions, they had not supplied a general proof* (i.c. presumably
that the solution is always possible and that the method will always lead
to the solution sought for). He says, “I prove it by the method of
descente applied in a quite special manner....The general demonstration
will be found by means of the descente duly and appropriately applied.”

Further on, Fermat says he has discovered ““ general rules for solving
the simple and double equations of Diophantus.”

‘“ Suppose, for example, that we have to make

2x% + 7967 equal to a square.

“7I have a general rule for solving this equation, if it is possible, or
discovering ils impossibility, and similarly in all cases and jfor all values
of the coefficient of x* and of the absolute term.

“Suppose we have to solve the double-equation

24 + 3 =square
2x + 5 = square } ’

“Bachet boasts, in his commentary on Diophantus®, of having dis-
covered a rule for solving in two particular cases; I make it general for
all kinds of cases and can determine, by rule, whether it is possible or not*.”

Thus Fermat asserts that he can solve, when it is possible to solve
it, and can determine, by a general method, whether it is possible or
impossible to solve, for any particular values of the constants, the more
general equation

22— Ay*=B.

This more general equation was of course solved by Lagrange. How

Fermat solved it we do not know. Itis true that he has sometimes been

1 Letter of June, 1658, to Kenelm Digby, Ocuvres de Fermat, 11. p. 402.

2 ¢¢ Relation des nouvelles découvertes en la science des nombres,” Oeuwres, 11. p. 433-

3 See on Diophantus 1v. 39, and above, pp. 80-82.

4 With this should be compared Fermat’s note on Dioph. 1v, 39, where he says,
similarly :

‘“ Suppose, if you will, that the double-equation to be solved is

2x+ §=square
ﬁx+3=sqnare}'

¢ The first square must be made equal to 16 and the second to 36; and others will be
found ad infinitum satisfying the question. Nor is it difficult to propound a general rule
for the solution of this kind of question.”

No doubt the double-equation in this case, as in the others referred to in the “Relation,”
would be transformed into the single equation

t2- 4Aut=B

by eliminating x. I think this shows how Fermat was led to investigate our equation:
a question which seems to have puzzled Konen (p. 29), in view of the fact that the actual
equation is not mentioned in the notes to Diophantus. The comparison of the two places
seems to make the matter clear. For example, the two equations mentioned above in
this note lead to the equation #2—3x%= —12, and the solution /=6, #=4 is easily
obtained.
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credited with the very same solution of the equation x?— 4y*=1 as that
given by Brouncker and Wallis; but this idea seems to be based on a
misapprehension of a sentence in Ozanam’s 4lgebra (1702). Ozanam
gives the Brouncker-Wallis solution as “une régle générale pour résoudre
cette question, qui est de M. de Fermat”; and possibly the ambiguity
of the reference of “qui” may have misled Lagrange and others into
supposing that the “régle” was due to Fermat.

For the history of the equation after Fermat’s time I must refer to
other works and particularly that of Konend. Euler, Lagrange, Gauss,
Jacobi, Dirichlet, Kronecker are the great names associated with it. I
will only add a few particulars with regard to Euler? as coming nearest
to Fermat.

In a letter to Goldbach® of 1oth August, 1730, Euler mentions that he
requires the solution of the equation a’—4y’=1 in order to make
ax®+bx + ¢ a complete square. He goes on to observe that the problem
of solving a®— Ay*=1 in integers was discussed between Wallis and
Fermat and that the solution (which he already attributes to Pell) was
set out in Wallis’ Opera. There is an indication in this very passage that
Euler had then only read the Brouncker-Wallis correspondence cursorily,
for he speaks of the equation 10gj?+ 1 =2x* as being the most difficult
case solved by them, whereas the most difficult examples actually solved
were 433)°+ 1 =a%and 31332+ 1 =22

A paper of a year or two later* contained the proof that the evolution
of successive solutions of @x?+ dx +c=»* when one is known requires that
one solution of a& + 1 = must also be known. Similarly, in his 4gebra®,
he shows that the solution of the latter equation is necessary for finding all
the possible solutions of the equation @x® + 4 =3?, the importance of which
remark is emphasised by Lagrange®

In the paper quoted in the last paragraph Euler finds any number
of successive solutions of @x*+ bx +¢=3* and the law for forming them,
when we are given one value # of x which will make ex*+dx+c¢ a
complete square and one value p of ¢ which will make a8+ 1 a complete
square, or, in other words, when ez + bz +c=m* and ap* + 1=¢". He
then takes the particular case ax®+ bx+d*=3* where (since x=o, y=4
satisfies the equation) we can substitute o for # and & for » in the
expressions representing the successive solutions of ax? + bx+c=3% Then
again, putting /=0 and Z=1, he is in a position to write down any

! Konen, p. cit.; cf. Cantor's Geschichte der Mathematik, 1v. Abschnitt XX., as
regards Euler and Lagrange.

2 Cf. Konen, op. cit. pp. 47-58.

3 Correspondi mathématigue et physique de guelques clldbres glométres du Xviliidme
siécle, publiée par P. H. Fuss, Pétersbourg, 1843, 1. p. 37.

4 ““De solutione problematum Diophanteorum per numeros integros” in Commentard
Acad. Petropol. 17323, VL. (1738), Pp- 175 5qq.= Commentationes arithm. 1. pp. 4—10.

5 Algebra, Part 11. ch. VI.
8 Additions to Euler’s 4/gebra, ch. vIIL.
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number of successive solutions of aé®+ 1=+ when one solution £=p,
n=g¢ is known. The successive values of ¢ are

o, p7 ZP?: 4?92_?1 oce

and the corresponding values of % are

L ¢y 24— 1, 47— 39, ...
the law of formation being in each case that, if 4, B be consecutive values
in either series, the next following is 295 — 4.

The question then arises how to find the first values g, ¢ which will
satisfy the equation. Euler first points out that,"'when a has one of many
particular forms, values of #, ¢ can at once be written down which satisfy
the equation. The following are such cases with the obvious values of
P and ¢.

@ = LR P=26 g=28+1,
a=d%"+2087; p=¢, g=adt+1
(where @ may even be fractional provided a¢’~! is an integer),
= (o + BE) + 2087 4 2* N pme, g=adtis P,
a=1a%2e® + alb p=ke, g=}ok?Pt 4 1.

But, if @ cannot be put into such forms as the above, then the method
explained by Wallis must be used. Euler illustrates by finding the least
values p, ¢ which will satisfy the equation 31£2+ 1 =7% and then adds a
table of the least solutions of the equation @¢*+ 1 =%* for all values of
a (which are not squares) from 2 to 68.

The important remark follows (§ 18) that the above procedure at once
gives a very easy way of finding closer and closer approximations to the
value of any surd ,/a. For, since ap®+ 1 = ¢% we have Ja=,/(¢*—1)/p,
and, if ¢ (and therefore p also) is large, ¢/ is a close approximation to \/a;
the error is not greater than 1/(2p%/a). Euler illustrates by taking /6.
The first solution of 6£ + 1 =y* (after §=0, p=1)is p=2, ¢=35. Taking
then the series of values above given for aé* + 1 = »% namely

f'—:O, 2 209, 4??2“% e 4, B: ZQB_A)

N=1, ¢ 2¢*— 1, 4¢°=3¢, ... £, F, 2qF - E,
and substituting p =2, ¢=g5, the successive corresponding values 7, Q
of ¢, n respectively become

P=o0, 2, 20, 198, 1960, 19402, 192060, 1901198, ...
Q- 1, 5, 49, 485, 4801, 47525, 470449, 4656905, ...

and the successive values (/2 are closer and closer approximations to /6.
1t will be observed that the method of obtaining successive approximations

H. D. 19
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to /a from successive solutions of aé®+ 1 =y’ is the same as that which,
according to the hypothesis of Zeuthen and Tannery, Archimedes used in
order to find his approximations to /3.

The converse process of finding successive solutions of a£* + 1 = % by
developing ./a as a continued fraction did not apparently occur to Euler
“till later. In two letters' to Goldbach of 4th Sept. 1753 and z3rd Sept.
1755 he speaks of a “ certain ” method and of improvements which he had
made in the “Pellian” method but gives no details. His next paper on
the same subject? returns to the problem of finding all the solutions of
ax® +bx +c=y* or ax®+b=»* when one is known, and in the course of
his discussion of the latter he arrives at “ the following remarkable theorem
which contains within it the foundation of higher solutions.

(GN x=a, y=>0 satisfies ax®+p =%
and x =¢, y=d satisfies ax®+ ¢ =37
then x =bc+ ad, y = bd + aac satisfies ax® + pg = 32"

That is to say, Euler rediscovers and recognises the importance of the
lemma to the Indian solution, as Lagrange did later.

More important is the paper of about three years later® in which Euler
obtained the solution of the equation x* - 4y*= 1 by the process of con-
verting ,/4 into a continued fraction, this course being the reverse of that
which was, according to the hypothesis of Tannery and Zeuthen, followed
by Archimedes, and to the feasibility of which Euler had called attention
in 1732-3. He begins by stating, without proof, that, if ¢*=/¢*+ 1, then
g/ is an approximation to .//, and ¢/p is “such a fraction as expresses
the value of ,// so nearly or exceeds it so little that a closer approximation
cannot be made except by bringing in greater numbers.” Next he develops
certain particular surds, namely ,/(13), +/(61) and ,/(6%), after which he
states the process generally thus. If ,/z be the given surd and # the root
of the greatest integral square which is less than 3, the process will give

TN
Jz—w+;l-+ 1

the successive quotients a, 4, ¢, d, being found by means of the process
shown in the following table :

1 Correspondance etc., ed. Fuss, pp. 614 5q., 62¢sq.

2 ¢ De resolutione formularum quadraticarum indeterminatarum per numeros integros”
in Novi Commentarii Acad, Petropol. 1762-3, 1X. (1764), pp. 3 5qq.= Commentat. arithm.
1. pp. 207-315.

3 “De usu novi algorithmi in problemate Pelliano solvendo ” in Nowi Commentarii
Acad. Petropol. 1765, X1. (1767), pp. 28-66 = Commentat. arithm. 1. pp. 316-336. The
paper seems to have been read as early as 15 Oct. 1759.
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Take and It follows that
I. 4=v a=z—Al=z-92 aé.u
a
.y
oy iG] Bt ag=[+a(A—B) bé”;ﬁ
z-C? 2+ C
III. C=pgs-A = B =a+46(B-C) cg2—
Y
- D2
IV. D=ye-C 6=277 =B+c(C-D) (jé%g
- £? v+ E
V. E=dd-D e=—s =y+d(D-E) e
€
etc. etc.

(This is of course exactly the process given in text-books of Algebra,
e.g. Todhunter’s.)

Euler now remarks as follows.

1. Thenumbers 4, B, C, D ... cannot exceed v ; the first, 4, is equal
to 5 since @ = (v + A)/a, aa — 4 = B < 9, and so0 on.

2. Unless where one of the numbers e, B3, vy, 3...is equal to unity,
none of the corresponding quotients a, 4, ¢, 4... can exceed 2.

3. When we arrive at a quotient equal to 27, the next quotients will be
a, b, ¢, d ... in the same order.

4. Similar periods occur with the letters a, 8, ¥, 8... and the term
of this series corresponding to a quotient 22 is always 1.

The successive convergents to the continued fraction are then investi-
gated and it is shown that, for successive convergents ¢/ beginning
with v/1,

¢ —zp*=—a, +8, —y, +3, —e etc. in order.
It follows that the problem is solved whenever one of the terms with a
positive sign, 8, §, ¢ etc., becomes 1.

Since unity for one of the terms a, 8, y, 8 corresponds to the quotient
2z, and each fresh period begins with 22, the first period will produce
a convergent ¢/ such that ¢> ~ z4* =+ 1; and the negative sign will apply
if the number of quotients constituting the period is odd, while the positive
sign will apply if the number of quotients is even. In the latter case we
have a solution of our equation at once; if, however, ¢*—z°=~1, we
must go on to the end of the second period in order to get an even number
of quotients and so satisfy the equation ¢®— 2=+ 1. Or, says Euler,
instead of going on and completing the second period, we can satisfy
the latter equation more easily thus.

Suppose ¢*>— zp* = — 1, and assume

P =2pq, ¢ =2¢"+1

Then 92— 2p% = 4" + 44 + 1 — 430%¢°

=1 +4g g -5+ 1)

= I.

19—2
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[This last derivation of a solution of 3*—zx®=1 from a known solution
of 3 —sa?= -~ 1 is of course the same as the Indian method of doing the
same thing, for they assumed p' = 2pg, ¢’ = ¢* + 3£ and ¢* + 2p* = ¢*+(¢* + 1).]

We thus see that in Euler’s method there is everything necessary to the
complete solution of our equation except the proof that it must always lead
to the desired result. Unless it is proved that the quotient 22 will actually
occur in the development of the continued fraction in every case, we cannot
be sure that the equation has any solution except x =o, y = 1.

I cannot, 1 think, do better than conclude by a quotation from
H. J. S. Smith?, the first part of which is well known® ¢ Euler observed
that [if 72— DU*=1] T/U is itself necessarily a convergent to the value
of /D, so that to obtain the numbers 7" and U it suffices to develop /D
as a continued fraction. It is singular, however, that it never seems to
have occurred to him that, to complete the theory of the problem, it was
necessary to demonstrate that the equation is always resoluble and that
all its solutions are given by the development of ,/D. His memoir
contains all the elements necessary to the demonstration, but here, as
in some other instances, Euler is satisfied with an induction which does
not amount to a rigorous proof. The first admissible proof of the re-
solubility of the equation was given by Lagrange in the Mélanges de la
Société de Turin, Vol. 1v. p. 41°.  He there shows that in the development
of /D we shall obtain an infinite number of solutions of some equation of
the form 72— DU®=4 and that, by multiplying together a sufficient
number of these equations, we can deduce solutions of the equation
72— DU*=1. But the simpler demonstration of its solubility which
is now to be found in most books on algebra, and which depends on
the completion of the theory (left unfinished by Euler) of the development
of a quadratic surd as a continued fraction, was first given by Lagrange
in the Hist. de P Académie de Berlin for 1767 and 1768, Vol. Xx111. p. 272,
and Vol. xx1v. p. 236% and, in a simpler form, in the Additions to Euler’s
Algebra®, Art. 37.”

1 ¢“Report on the Theory of Numbers, Part 111.,” British Association Reports for 1861,
London, 1862, p. 315= Collected Works, Vol. 1., Oxford, 1894, p. 192.

2 It is given in Cantor, Gesch. d. Math. 1V. 1908, p. 159, and referred to by Konen,
0p. cit. p. 51.

8 ¢“Solution d’un probléme d’Arithmétique,” finished at Berlin on 2oth Sept. 1768
and published in Miscellanca Taurinensia, 1V. 1766-1769= Ocuvres de Lagrange, 1.
pp. 671-731.

4 The references are: ““ Sur la solution des problémes indéterminés du second degré,”
read 24th Nov. 1768 and published in the Mémoires de I’ Académie Royale des Sciences
et Belles-lettres de Berlin, Vol. XX111., 1769, pp. 165-310= Ocuvres de Lagrange, 11.
PP- 377-535; ‘‘ Nouvelle méthode pour résoudre les problémes indéterminés en nombres
entiers,” read 21st June, 1770, and published in AZémoires de I’Académie Royale des
Sciences et Belles-lettres de Berlin, Vol. XX1v., 1770, pp. 181-256 = Ocuvres de Lagrange,
1L pp. 655-726.

5 The Additions of Lagrange were first printed as an appendix to Zlmens d’ Algibre
par M. L. Euler traduits de Pallemand, Vol. 11., Lyons, 1774; second edition, Paris,
1798 ; they were thence incorporated in Oeuwres de Lagrange, Vil. pp. 158 sqq.
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SECTION IIL
THEOREMS AND PROBLEMS ON RATIONAL RIGHT-ANGLED TRIANGLES.

1. On No. zo of the problems about right-angled triangles added
by Bachet to Book vi. (“To find a right-angled triangle such that its
area is equal to a given number”) Fermat has a note which shall be
quoted in full, not only for the sake of the famous theorem enunciated
in it, but because, exceptionally, it indicates the lines on which his proof
of the theorem proceeded.

‘“The area of a right-angled triangle the sides of which
are rational numbers cannot be a square number.

“This proposition, which is my own discovery, I have at length
succeeded in proving, though not without much labour and hard thinking,
I give the proof here, as this method will enable extraordinary develop-
ments to be made in the theory of numbers.

“If the area of a right-angled triangle were a square, tkere would exist
two biguadrates the difference of whick would be a square number. Con-
sequently there would exist two square numbers the sum and difference of
which would both be squares. Therefore we should have a square number
which would be equal to the sum of a square and the double of another
square, while the squares of which this sum is made up would themselves
[#e. taken once each] have a square number for their sum. But if a square
is made up of a square and the double of another square, its side, as I can
very easily prove, is also similarly made up of a square and the double of
another square. From this we conclude that the said side is the sum of the
sides about the right angle in a right-angled triangle, and that the simple
square contained in the sum is the base and the double of the other square
the perpendicular.

“This right-angled triangle will thus be formed from two squares,
the sum and the difference of which will be squares. But both these
squares can be shown to be smaller than the squares originally assumed
to be such that both their sum and their difference are squares. Thus,
if there exist two squares such that their sum and difference are both
squares, there will also exist two other integer squares which have the same
property but have a smaller sum. By the same reasoning we find a sum
still smaller than that last found, and we can go on ad infinitum finding
integer square numbers smaller and smaller which have the same property.
This is, however, impossible because there cannot be an infinite series
of numbers smaller than any given integer we please.—The margin is too
small to enable me to give the proof completely and with all detail.

By means of these considerations I have also discovered and proved
that no friangular number except 1 can be a biguadrate.”
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As Wertheim says, it may have been by following out the indications
thus given by Fermat that Euler succeeded in proving the propositions
that «* — »* and a*+»* cannot be squares, as well as a number of other
theorems connected therewith (Commentationes arithmeticae collectae, 1.
Pp. 24 5qq.; Algebra, Part 1. Chapter xuL).

Zeuthen? suggests a method of filling out Fermat’s argument, thus.

The sides of a rational right-angled triangle can be expressed as

22498 at—yR 2xy.

As a common factor in the sides would appear as a square in the
number representing the area, we can neglect such a factor, and assume
that #® — »* and therefore also x +y and x—y are odd numbers and that
x, y are prime to one another, so that x, y, x +», x —y are all prime to
one another.

We have now to test the assumption that the area of the triangle

xy (2 —~3) (% +3)
is a square. If so, the separate factors must be squares, or
x=u' y=70,
W+ =7 B —1P=¢4>

(““ There would exist two biguadrates the difference of which (1 — v*) would
be a square, and consequently there would extst two squares the sum and differ-
ence of which [0 + v*, u* — U*} would both be squares,” Fermat.)

From the last two equations we obtain

W= -7 =(-9) (2 +9)

(* We should have a square number whick would be equal to the sum

of a square and the double of another square [ p* = 20° + ¢*],” Fermat.)

Now p+¢ and p—g are both even numbers because, on the above
assumptions, p* and ¢* are both odd; but they cannot have any other
common factor except 2, since #* and 2* are prime to one another. It
follows therefore from the last equation that

pro={) p-4-{

where 7 is an even number.

”2

2’

We obtain, therefore,

2
The whole numbers 7* and 7; are therefore sides of a new right-angled

& : m'n®
triangle with the square area i

! Zeuthen, Geschichte der Mathematik im XV1. und XV11. Jakvhundert, 1903, p. 163.
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(“If a square is made up of a square and the double of another square
{#°= 22" + ¢), its side is, as I can very easily prove, also made up of a

square and the double of another square [ p=m+ z(-'f)j . From this we
2

conclude that the said side is the sum of the sides about the right angle
in a right-angled triangle, the square [#*] being the base and the double of

the other square [2 (g)j the perpendicular,” Fermat.)

That the sides of the new triangle are less than those of the original
triangle is clear from the fact that the square on its hypotenuse #? or
x is a factor of one of the perpendicular sides of the original triangle’.

As now an infinite series of diminishing positive whole numbers is
impossible, the original assumption from which we started is also impossible.

It will be observed, as Zeuthen says, that the proof includes also the
proof of the fact that #* — ¢* cannot be a square and therefore cannot be
a fourth power, from which it follows that the equation #* =2 + z# cannot
be solved in whole numbers, and consequently cannot be solved in rational
numbers either.

The history of this theorem would not be complete without an account
of a “proof originating with Fermat” which Wertheim has reproduced®
In the small paper of Fermat’s entitled * Relation des nouvelles découvertes
en la science des nombres®” containing a statement of his method
of ‘“diminution without limit” (descente infinie or indéfinie) and of a
number of theorems which he proved by means of it, there is a remark
that he had sent to Carcavi and Frénicle some proofs based on this
method. And, sure enough, Frénicle gives a proof by this method of
the theorem now in question in his “ Traité des triangles rectangles en
nombres®” Wertheim accordingly concludes that we have here a proof
of Fermat’s. A short explanation is necessary before we come to Frénicle’s
proof.

We obtain a right-angled triangle , x, y in rational numbers (2* = 2* + %)
if, a, 4 being any integers and a>4, we put

s=a"+0 x=a~ b y==zab.
If ais prime to 4 and one of these numbers is even, the other odd, then
it is easily shown that the greatest common measure of &, 3, z is I.

In the right-angled triangle a® - 4* and 24/ are the perpendicular sides,

1 Zeuthen's inference at this point diverges slightly in form from what we actually find
in Fermat’s own statement of his argument. Fermat does not actually say that the new
right-angled triangle is a triangle in smaller numbers than the original triangle and with
the same assumed property, but that its formation gives us two new square numbers the
sum and difference of which are squares, and which are smaller than the two squares
originally assumed to have this property.

2 Zeitschrift fiir Math. u. Physik, hist. litt. Abtheilung XLIV. 1899, pp. 4-6.

3 Qenvres de Fermat, Vol. I1. pp. 431-6.
4 Mimoires de I’ Académie Royale des Sciences, V., Paris, 1729, pp. 83-166.
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and (a*— 4% ab is the area. a, 4 are called the generating numbers (the
numbers from which the triangle is formed) and if @ is prime to 4, and one
of them is odd and the other even, so that x, y, z have no common factor
except 1, the triangle is called a prémitive triangle.

If (a*—#%) ab is the area of a primitive right-angled triangle—and it
is enough to prove the proposition for such—each of the three numbers
a®— ¥, a, b is prime to the other two. If, then, the product is a square
number, each of the three factors must be square, and in that case a®— #*
will be the difference between two fourth powers. The theorems

(1) the area of a right-angled triangle in rational numbers cannot be
a square number, and

(2) the difference of two fourth powers cannot be a square,
accordingly state essentially the same fact.

The proof which Frénicle gives of the first of these propositions depends
on the following Lemmas.

Lemma 1. If the odd perpendicular of a primitive right-angled triangle
is a square number, there exists a second primitive right-angled
triangle with smaller sides whkich has for its odd perpendicular
the root of the said square number. y

If a®— =2, it follows that a®=4*+¢% so that a, &, ¢ are the sides
of a right-angled triangle. The odd perpendicular of this second triangle
is ¢, for by hypothesis ¢ is odd; consequently the even perpendicular is
4, while ¢ is the hypotenuse. The triangle is primitive” because a
common divisor of any two of the three numbers a, 4, ¢ would divide
the third, while by hypothesis @, 4 have no common factor except 1.
Next, the second triangle has smaller sides than the first, since ¢<¢,
a<at+ P b< 2ab.

By this lemma we can from the triangle 9, 40, 41 derive the triangle
3, 4, 5, and from the triangle 225, 25312, 25313 the triangle 15, 112, 113

Lemma II. Jf in a primitive right-angled triangle the hypotenuse as
well-as the even perpendicular were square, there would exist a
second primitive right-angled triangle with smaller sides which
would have for hypotenuse the root of the hypotenuse of the first,
Jor 0dd perpendicular a square number, and for even perpendicular
the double of a square number.

Let the sides of the first triangle be a®+#, a®*—#*, 2ab. If 2ab were

a square, ab would be double of a square ; therefore, since a, & are prime
to one another, one of these two numbers, namely the odd one, would
be a square, and the other, the even one, would be double of a square.
Let @ be the odd one of the two, & the even. If now the hypotenuse
a*+ 5 were a square number ¢ we should have a second right-angled
triangle a, 4, ¢ which wonld necessarily be primitive and in which the sides
would be smaller than those of the first triangle; for c<¢?, &< 2ab and
a<a®— b since a+b>a, a-bZ 1.
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By means of the above two lemmas combined we can now prove that
the area of a primitive right-angled triangle cannot be a square number.

Let the sides of the triangle be a*+#, a*~ &, 2a5. 1f now the area
were square, the product of the perpendicular sides would be double of
a square. But the perpendicular sides are prime to one another. There-
fore the odd perpendicular a*—# would be a square, and the even
perpendicular 2a4 the double of a square. But, if a*—4# were equal to
¢ we could (by the first Lemma) find a second primitive triangle with
smaller sides in which the odd perpendicular would be ¢, the even per-
pendicular 4, and the hypotenuse a. Again, since 2a4 would be double
of a square, a4 would be a square, and, since @ is prime to 4, both a and
4 would be squares. The second triangle would accordingly have a square
number both for its hypotenuse (z) and for its even perpendicular ().
That is, the second primitive triangle would satisfy the conditions of the
second Lemma, and we could accordingly derive from the second primitive
triangle a third primitive triangle with still smaller sides which would,
exactly like the first triangle, have a square number for its odd perpendicular,
and for its even perpendicular the double of a square number.

From this third triangle we conld obtain a fourth, and by means of the
fourth we could obtain a fifth with the same property as the first, and so
we should have an unending series of primitive right-angled triangles, each
successive triangle having smaller sides than the one before, and all being
such that the odd perpendicular would be a square number, the even
perpendicular the double of a square number, and consequently the area
a square number. This, however, is impossible since there cannot be an
unending series of integral numbers less than any given integral number.

Frénicle proves, by similar considerations, that neither can the area of a
right-angled triangle in rational numbers be the double of a square numéer.

In enunciating Fermat’s problems on right-angled triangles I shall in
future for brevity and uniformity use ¢, #, { to denote the three sides, while
¢ will always represent the hypotenuse and £, 5 the two perpendicular sides.

2. Tv find a rightangled triangle (L, & n) suck that
{=u" g
f+n=12* } )
[Since &*= £+ ", this problem is equivalent to that of finding x, y such
that )
x+y=17°
2+yt= w‘} ;
which is Question 17 in Chapter x1v. of Euler's 4/gebra, Part 1n.]
First method.

Form a right-angled triangle from the numbers x + 1, x; the sides will

then be .,
{=222+2x+1, §=2x+1, n=22"+2x.
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We have then the double-equation
20+ 20+ 1 =24
2x+ 4w +1=17) i
The ordinary method of Diophantus gives the solution x=—22; the
triangle will therefore be formed from —£ and —22 or, if we take the
numerators only, — 5 and — 12, and the triangle is (169, — 119, 120) which
is equally the result of forming a triangle from + 5 and + 12.

But, as one of the perpendiculars is negative, we must find another
value of & which will make all three sides positive.

We accordingly form a triangle from x +5 and 12, instead of from
5 and 12, and repeat the operation. This gives for the sides

{=x’+ 10+ 169, £=a"+10X— 119, = 24%+ 120,
and we have to solve the double-equation
2 + 10% + 169 = o,
a?+ 340+ 1=7R
Making the absolute term the same in each, we have to solve
x% + 10% + 169 =227,
169x% + 5746x + 169 =0
The difference is 168x* + 57362, which we may separate into the factors
14x, 122 + 2588 (the sum of the terms in x being 26x or 2. 13x).

Equating the square of half the sum of these factors to the larger
expression, or the square of half their difference to the smaller, we find

in the usual way
X ="309566 *

The triangle is therefore formeéd from 2359992, 12, or from 2150905,
246792, and the triangle itself is
4687298610289, 4565486027761, 1061652293520,

the hypotenuse and the sum of the other two sides being severally squares.

Second method.
This is the same as the first method up to the forming of the triangle
from x + 5 and 12 and the arrival at the double-equation
«+ 100 + 169 = 2%,
P+3qx+ 1=7
Multiply the two expressions together, and we must have
x* + 44%° + 5102% + 5756x + 169 = a square
= (13 + 2818 x — x®)° say;
this gives, as a matter of fact, the same value of x, namely

x = 2048075
TT%0888
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and the triangle is the same as before'.

In his note on Diophantus vi. 22 Fermat says that he confidently
asserts that the above right-angled triangle is the smallest right-angled
triangle in rational numbers which satisfies the conditions.

[The truth of this latter assertion was proved by Lagrange®. Lagrange
observes that, since £+9=7?% £+ 4*=x* say, we have, if we put z for £ — 9,

2+ yh=2ah,
or 2= A=
and, if x, y is any solution of the latter equation,

£=3(+2), 1=4("-2)
! For comparison we may give Euler’s solution (4/gebra, Part 11., Art. 2405 Commen-
tationes arithmeticae, 11. p. 398).
We have to solve the equations
xty=u?
22y y2=ot } ]
First make x2+»2 a square by putting x=a? - 82, y=2ab, so that
22+y2=(a2+ 422
To make the last expression a fourth power put a=p2%— ¢2, b=12pg, so that

A+ (0,

and accordingly 22432=(p24+g2)4

‘We have now only to make x+y a square.

Now x=a2-B=pt-6plg% + g, y=vab=4p% - 420%;
therefore P+ 4% - 682 - 4 p3+ g*=a square.

In solving this we have to note that , ¢ should be positive, g must be >g¢ (for other-
wise y would be negative), and >4 in order that x may be positive.

Put PHay - 6P - apP+ = (P - g+ PP
and we obtain 4°9 - 6p%% = — 4 £%9 + 6p%?, whence p[q:% .

But, if we pnt p=3, ¢=2, we find x= - 119, a negative value.

To find fresh values, we can substitute for p the expression § ¢+~ and solve for the
ratio ¢f; then, by taking for ¢ the numerator and for » the denominator of the fraction
so found, we find a value for # and thence for x, y. This is Euler’s method in the
Algebra. But we avoid the necessity for clearing of fractions if (as in the Comment.
ariihm.) we leave 2 as the value of ¢ and substitute 3+v for 3 as the value of 2.

We then have = 81+108v+ 5402+ 1203+ 24,

i +4%9= 216+2160+ 7202+ 825,
—6p%%= — 216 — 1447 — 2472,
._4]’Y3= = 96_327’x
+¢t= 16,
whence X+y=1+ 1480 + 10202+ 2023 + 4 =2 square=(1 + 747 — 22)?, say;
and we obtain
1343'=4w, or v=l-i:—3, and p=3+7v= 1-159

Taking integral values, we put p=1469, ¢=84.

Therefore 2=1385.1553=2150905, 6=168.1409=246792,
and x=4565486027761, y=1061652293520,
which is the same as Fermat’s solution.

2 N. Mémoires de P Acad. Royale des Sciences et Belles-lettres de Berlin, année 1777,
Berlin, 1779 = Oeuvres de Lagrange, 1V. pp. 377-398.

, while g=2.
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He sets himself therefore to find a general solution of the equation
2x*~y*=2% and effects it by a method which is a variation of Fermat’s
descente, one of the most fruitful methods, as Lagrange observes, in the
whole theory of numbers. The modified method consists of two parts,
(1) a proof that, assuming that there exist integral values of «x, y greater
than 1 which satisfy the condition 2x*-3p*=2% there are still smaller
integral values which will also satisfy it, (2) the discovery of a general
method of deducing the latter from the former. This being done, and
it being kn